Finite element analysis of nonsmooth frictional contact

被引:0
作者
Pandolfi, Anna [1 ]
Ortiz, Michael [2 ]
机构
[1] Politecnico, Dipartimento Ingn Strutturale, I-2013 Milan, Italy
[2] CALTECH, Engn & Appl Sci Div, Pasadena, CA 91125 USA
来源
IUTAM SYMPOSIUM ON COMPUTATIONAL METHODS IN CONTACT MECHANICS | 2007年 / 3卷
关键词
frictional contact; non-smooth contact; finite elements; variational formulations;
D O I
10.1007/978-1-4020-6405-0_4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A nonsmooth contact class of algorithms were introduced by Kane et al. [1] and extended to the case of friction by Pandolfi et. al [2]. The formulation specifically addresses geometries for which neither normals nor gap functions can be properly defined, e.g. bodies with corners. The formulation provides the incremental displacements in variational form, following from a minimum principle. Selected numerical examples of application of the algorithm are presented here.
引用
收藏
页码:57 / +
页数:4
相关论文
共 30 条
[1]  
[Anonymous], ENG COMPUT, DOI DOI 10.1108/EB023876>
[2]  
Boggs PT., 1995, ACTA NUMER, V4, P1, DOI DOI 10.1017/S0962492900002518
[3]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[4]  
Clarke F., 1985, OPTIMIZATION NONSMOO
[5]   A NUMERICALLY STABLE DUAL METHOD FOR SOLVING STRICTLY CONVEX QUADRATIC PROGRAMS [J].
GOLDFARB, D ;
IDNANI, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (01) :1-33
[6]  
Kane C, 2000, INT J NUMER METH ENG, V49, P1295, DOI 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.3.CO
[7]  
2-N
[8]   Finite element analysis of nonsmooth contact [J].
Kane, C ;
Repetto, EA ;
Ortiz, M ;
Marsden, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 180 (1-2) :1-26
[9]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA
[10]   On the development of thermodynamically consistent algorithms for thermomechanical frictional contact [J].
Laursen, TA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 177 (3-4) :273-287