Adsorption of Carbon Dioxide for Post-combustion Capture: A Review

被引:315
作者
Raganati, Federica [1 ]
Miccio, Francesco [2 ]
Ammendola, Paola [1 ]
机构
[1] CNR, Ist Sci & Tecnol Energia & Mobilita Sostenibili S, I-80125 Naples, Italy
[2] CNR, Ist Sci & Tecnol Mat Ceramici ISTEC, I-48018 Faenza, Italy
关键词
TEMPERATURE SWING ADSORPTION; METAL-ORGANIC FRAMEWORKS; MULTISTAGE FLUIDIZED-BED; CONTINUOUS CO2 CAPTURE; EXPANDED MESOPOROUS SILICA; FINE ACTIVATED CARBON; SOLID SORBENTS; FLUE-GAS; WORKING CAPACITY; HEAT-TRANSFER;
D O I
10.1021/acs.energyfuels.1c01618
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aiming at meeting the global goals established for carbon dioxide (CO2) reduction, carbon capture and storage (CCS) plays a key role. In this framework, the adsorption-based CO2 post-combustion capture is considered one of the most promising approaches because it can provide remarkable energy savings with respect to the standard amine-based absorption capture. To date, most of the research effort has been devoted to the development of novel cutting-edge adsorbent materials with the primary purpose of enhancing the adsorption capacity and lifetime while reducing the heat of adsorption, thus lessening the energetic requirement of the sorbent regeneration. Anyway, other factors, beyond the sorbents, greatly affect the competitiveness of the CO2 capture based on the adsorption route, namely, the gas-solid contacting system, impacting the sorbent utilization efficiency, and the regeneration strategies, determining most of the global CO2 capture costs. This review describes the state-of-the-art and most recent progresses of the adsorption-based CO2 post-combustion capture. In particular, the first section describes the CO2 adsorption performances of different classes of solid sorbents on the basis of the most important evaluation parameters (equilibrium adsorption capacity, multi-cyclic stability, etc.). In the second section, the two main gas-solid contacting systems, i.e., fixed beds and fluidized beds, have been reviewed, pointing out their strengths and limitations. Finally, the third section provides a review on the different regeneration modes (temperature, pressure, or hybrid swings), with a focus on the possible strategies available to limit the energy penalty.
引用
收藏
页码:12845 / 12868
页数:24
相关论文
共 50 条
  • [1] Review of post-combustion carbon dioxide capture technologies using activated carbon
    Mukherjee, Alivia
    Okolie, Jude A.
    Abdelrasoul, Amira
    Niu, Catherine
    Dalai, Ajay K.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 83 : 46 - 63
  • [2] A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture
    Zhao, Ruikai
    Liu, Longcheng
    Zhao, Li
    Deng, Shuai
    Li, Shuangjun
    Zhang, Yue
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 114
  • [3] Post-combustion carbon capture
    Chao, Cong
    Deng, Yimin
    Dewil, Raf
    Baeyens, Jan
    Fan, Xianfeng
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
  • [4] Post-combustion carbon capture by polymeric membrane: A review
    Singh, Priya
    Shah, Saumya
    Rai, Santosh Kumar
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 318 - 324
  • [5] Post-combustion carbon capture by membrane separation, Review
    Karaszova, Magda
    Zach, Boleslav
    Petrusova, Zuzana
    Cervenka, Vojtech
    Bobak, Marek
    Syc, Michal
    Izak, Pavel
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 238
  • [6] Adsorption performance indicator to screen carbon adsorbents for post-combustion CO2 capture
    Alvarez-Gutierrez, N.
    Rubiera, F.
    Pevida, C.
    Jin, Y.
    Bae, J.
    Su, S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2362 - 2371
  • [7] Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes
    Allangawi, Abdulrahman
    Alzaimoor, Eman F. H.
    Shanaah, Haneen H.
    Mohammed, Hawraa A.
    Saqer, Husain
    El-Fattah, Ahmed Abd
    Kamel, Ayman H.
    C-JOURNAL OF CARBON RESEARCH, 2023, 9 (01):
  • [8] Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials
    Lee, Zhi Hua
    Lee, Keat Teong
    Bhatia, Subhash
    Mohamed, Abdul Rahman
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) : 2599 - 2609
  • [9] Power plant post-combustion carbon dioxide capture: An opportunity for membranes
    Merkel, Tim C.
    Lin, Haiqing
    Wei, Xiaotong
    Baker, Richard
    JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) : 126 - 139
  • [10] Carbon-based adsorbents for post-combustion capture: a review
    Zhao, Hongyu
    Luo, Xiaona
    Zhang, Haijiao
    Sun, Nannan
    Wei, Wei
    Sun, Yuhan
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2018, 8 (01): : 11 - 36