A continuous space-time finite element method for the wave equation

被引:104
作者
French, DA [1 ]
Peterson, TE [1 ]
机构
[1] UNIV VIRGINIA,DEPT MATH APPL,CHARLOTTESVILLE,VA 22903
关键词
D O I
10.1090/S0025-5718-96-00685-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The consider a finite element method for the nonhomogeneous second-order wave equation, which is formulated in terms of continuous approximation functions in both space and time, thereby giving a unified treatment of the spatial and temporal discretizations. Our analysis uses primarily energy arguments, which are quite common for spatial discretizations but not for time. We present a priori nodal (in time) superconvergence error estimates without any special time step restrictions. Our method is based on tensor product spaces for the full discretization.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 18 条
[11]  
FRENCH DA, CMAMR1391 CTR MATH I
[12]   CONVERGENCE OF A 2ND-ORDER SCHEME FOR SEMILINEAR HYPERBOLIC-EQUATIONS IN 2 + 1 DIMENSIONS [J].
GLASSEY, R ;
SCHAEFFER, J .
MATHEMATICS OF COMPUTATION, 1991, 56 (193) :87-106
[14]   DISCONTINUOUS GALERKIN FINITE-ELEMENT METHODS FOR 2ND-ORDER HYPERBOLIC PROBLEMS [J].
JOHNSON, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) :117-129
[15]   ON OPTIMAL ORDER ERROR-ESTIMATES FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
KARAKASHIAN, O ;
AKRIVIS, GD ;
DOUGALIS, VA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (02) :377-400
[16]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[17]  
RICHTER GR, EXPLICIT FINITE ELEM
[18]   NUMERICAL-SOLUTION OF A NON-LINEAR KLEIN-GORDON EQUATION [J].
STRAUSS, W ;
VAZQUEZ, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (02) :271-278