A continuous space-time finite element method for the wave equation

被引:104
作者
French, DA [1 ]
Peterson, TE [1 ]
机构
[1] UNIV VIRGINIA,DEPT MATH APPL,CHARLOTTESVILLE,VA 22903
关键词
D O I
10.1090/S0025-5718-96-00685-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The consider a finite element method for the nonhomogeneous second-order wave equation, which is formulated in terms of continuous approximation functions in both space and time, thereby giving a unified treatment of the spatial and temporal discretizations. Our analysis uses primarily energy arguments, which are quite common for spatial discretizations but not for time. We present a priori nodal (in time) superconvergence error estimates without any special time step restrictions. Our method is based on tensor product spaces for the full discretization.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 18 条
[1]  
AZIZ AK, 1989, MATH COMPUT, V52, P255, DOI 10.1090/S0025-5718-1989-0983310-2
[2]  
BABUSKA I, 1990, SIAM J NUMER ANAL, V5, P363
[3]  
BAKER GA, 1979, RAIRO-ANAL NUMER-NUM, V13, P75
[4]   CONTINUOUS FINITE-ELEMENTS IN-SPACE AND TIME FOR THE NONHOMOGENEOUS WAVE-EQUATION [J].
BALES, L ;
LASIECKA, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (03) :91-102
[5]   NEGATIVE NORM ESTIMATES FOR FULLY DISCRETE FINITE-ELEMENT APPROXIMATIONS TO THE WAVE-EQUATION WITH NONHOMOGENEOUS L(2) DIRICHLET BOUNDARY DATA [J].
BALES, L ;
LASIECKA, I .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :89-115
[6]   FULLY DISCRETE GALERKIN METHODS FOR THE KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (07) :859-884
[7]  
DEFRUTOS J, ACCURACY CONSERVATIO
[8]   ANALYSIS OF A CONTINUOUS FINITE-ELEMENT METHOD FOR HYPERBOLIC-EQUATIONS [J].
FALK, RS ;
RICHTER, GR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) :257-278
[9]  
French D.Z., 1991, APPL MATH COMPUT, V39, P271
[10]   LONG-TIME BEHAVIOR OF ARBITRARY ORDER CONTINUOUS-TIME GALERKIN SCHEMES FOR SOME ONE-DIMENSIONAL PHASE-TRANSITION PROBLEMS [J].
FRENCH, DA ;
JENSEN, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (03) :421-442