Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications

被引:12
作者
Chen, DZ [1 ]
Daescu, O
Dai, Y
Katoh, N
Wu, XD
Xu, JH
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Texas, Dept Comp Sci, Richardson, TX 75080 USA
[3] Univ Illinois, Dept Bioengn MC 063, Chicago, IL 60607 USA
[4] Kyoto Univ, Grad Sch Engn, Dept Architecture & Architectural Syst, Nishikyo Ku, Kyoto, Japan
[5] Univ Texas Pan Amer, Dept Comp Sci, Edinburg, TX 78541 USA
[6] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
combinatorial optimization; computational geometry; sum of linear fractional functions; parametric linear programming; robustness;
D O I
10.1007/s10878-005-5485-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an improved algorithm for solving the sum of linear fractional functions (SOLF) problem in 1-D and 2-D. A key subproblem to our solution is the off-line ratio query (OLRQ) problem, which asks to find the optimal values of a sequence of m linear fractional functions (called ratios), each ratio subject to a feasible domain defined by O(n) linear constraints. Based on some geometric properties and the parametric linear programming technique, we develop an algorithm that solves the OLRQ problem in O((m+n)log (m+n)) time. The OLRQ algorithm can be used to speed up every iteration of a known iterative SOLF algorithm, from O(m(m+n)) time to O((m+n)log (m+n)), in 1-D and 2-D. Implementation results of our improved 1-D and 2-D SOLF algorithm have shown that in most cases it outperforms the commonly-used approaches for the SOLF problem. We also apply our techniques to some problems in computational geometry and other areas, improving the previous results.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 29 条
[1]   On minimum-area hulls [J].
Arkin, EM ;
Chiang, YJ ;
Held, M ;
Mitchell, JSB ;
Sacristan, V ;
Skiena, SS ;
Yang, TC .
ALGORITHMICA, 1998, 21 (01) :119-136
[2]  
Barros A. I., 1998, DISCRETE FRACTIONAL
[3]  
BINI DA, 1998, NUMERICAL COMPUTATIO
[4]   DUALITY AND SENSITIVITY ANALYSIS FOR FRACTIONAL PROGRAMS [J].
BITRAN, GR ;
MAGNANTI, TL .
OPERATIONS RESEARCH, 1976, 24 (04) :675-699
[5]   Deterministic algorithms for 2-d convex programming and 3-d online linear programming [J].
Chan, TM .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1998, 27 (01) :147-166
[6]   MINIMAL RATIO SPANNING TREES [J].
CHANDRASEKARAN, R .
NETWORKS, 1977, 7 (04) :335-342
[7]   ON THE CONVEX LAYERS OF A PLANAR SET [J].
CHAZELLE, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) :509-517
[8]   Determining an optimal penetration among weighted regions in two and three dimensions [J].
Chen, DZ ;
Daescu, O ;
Hu, XB ;
Wu, XD ;
Xu, JH .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (01) :59-79
[9]  
CRAIG L, 1994, TR9416R1 U MAR I SYS
[10]  
DANIELS K, 1995, P 5 MSI STON BROOK W