Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning

被引:2
|
作者
Xiang, Mingjun [1 ,2 ,3 ,4 ]
Wang, Lingxiao [1 ,3 ]
Yuan, Hui [2 ]
Zhou, Kai [1 ]
Roskos, Hartmut G. [2 ]
机构
[1] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt Main, Phys Inst, D-60438 Frankfurt, Germany
[3] Xidian FIAS Int Joint Res Ctr, D-60438 Frankfurt, Germany
[4] Xidian Univ, Xian 710071, Peoples R China
来源
2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022) | 2022年
关键词
D O I
10.1109/IRMMW-THz50927.2022.9895691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuous progress of terahertz (THz) generating and sensing technology, THz imaging is promising for a wide application range. However, 3D scene reconstruction at THz bands faces with challenges due to the difficulty of accurate phase data recording. In this paper, we demonstrate a phase retrieval method for THz Fourier imaging based on a deep learning (DL) algorithm. This scheme incorporates Fraunhofer diffraction as the physical origin of Fourier imaging as prior knowledge. The classification and reconstruction tasks are achieved based on the dataset transplanted from MNIST. The process is composed of two steps. The supervised DL based on the prepared data for classification, and phase reconstruction and the unsupervised DL network (PhysenNet) performing de-noising. The developed DL method achieves 94% accuracy for the classification task and 0.03 mean square error for the reconstruction task, which means that complex and easily-disturbed heterodyne detection can be replaced to a certain extent.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Amplitude/Phase Retrieval for Terahertz Holography With Supervised and Unsupervised Physics-Informed Deep Learning
    Xiang, Mingjun
    Yuan, Hui
    Wang, Lingxiao
    Zhou, Kai
    Roskos, Hartmut G.
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2024, 14 (02) : 208 - 215
  • [2] Sparse phase retrieval using a physics-informed neural network for Fourier ptychographic microscopy
    Zhang, Z. H. O. N. G. H. U. A.
    Wang, T. I. A. N.
    Feng, S. H. A. O. W. E., I
    Yang, Y. O. N. G. X. I. N.
    Lai, C. H. U. N. H. O. N. G.
    LI, X. I. N. W. E. I.
    Shao, L. I. Z. H. I.
    Jiang, X. I. A. O. M. I. N. G.
    OPTICS LETTERS, 2022, 47 (19) : 4909 - 4912
  • [3] Improving Aerosol Retrieval From MISR With a Physics-Informed Deep Learning Method
    Man, Wenjing
    Tao, Minghui
    Xu, Lina
    Xu, Xiaoguang
    Jiang, Jianfang
    Wang, Jun
    Wang, Lunche
    Wang, Yi
    Fan, Meng
    Chen, Liangfu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [4] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [5] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [6] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [7] Depth Reconstruction for Reference-Free THz Holography Based on Physics-Informed Deep Learning
    Xiang, Mingjun
    Yuan, Hui
    Wang, Lingxiao
    Zhou, Kai
    Roskos, Hartmut G.
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [8] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [9] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [10] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-Electronic Advances, 2024, 7 (01) : 7 - 19