Mean value in invexity analysis

被引:121
作者
Antczak, T [1 ]
机构
[1] Univ Lodz, Fac Math, PL-90238 Lodz, Poland
关键词
invex set with respect to eta; invex function with respect to eta; eta-path; mean-value inequality; mean-value theorem;
D O I
10.1016/j.na.2004.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a generalization of the mean value theorem is considered in the case of functions defined on an invex set with respect to n (which is not necessarily connected). (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1473 / 1484
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 2004, NONLINEAR PROGRAMMIN
[2]   WHAT IS INVEXITY [J].
BENISRAEL, A ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :1-9
[3]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[4]   INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA [J].
CRAVEN, BD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 24 (03) :357-366
[5]  
Dieudonne J., 1960, FDN MODERN ANAL
[6]  
FICHTENHOLZ GM, 1962, RACHUNEK ROZNICZKOWY
[7]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[8]   MEAN-VALUE THEOREMS IN NONSMOOTH ANALYSIS [J].
HIRIARTURRUTY, JB .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1980, 2 (01) :1-30
[9]   GENERIC DIFFERENTIABILITY OF LIPSCHITZIAN FUNCTIONS [J].
LEBOURG, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 256 (DEC) :125-144
[10]  
MANAGASARIAN OL, 1969, NONLINEAR PROGRAMMIN