Aziridine Formation by a FeII/α-Ketoglutarate Dependent Oxygenase and 2-Aminoisobutyrate Biosynthesis in Fungi

被引:35
作者
Bunno, Reito [1 ]
Awakawa, Takayoshi [1 ,2 ]
Mori, Takahiro [1 ,2 ,3 ]
Abe, Ikuro [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Pharmaceut Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[2] Univ Tokyo, Collaborat Res Inst Innovat Microbiol, Bunkyo Ku, Yayoi 1-1-1, Tokyo 1138657, Japan
[3] PRESTO Japan Sci & Technol Agcy, Kawaguchi, Saitama 3320012, Japan
基金
日本科学技术振兴机构;
关键词
2-aminoisobutyric acid; HAD-hydrolase; non-heme iron oxygenase; X-ray crystal structure; alpha-ketoglutarate-dependent oxygenase; CRYSTAL-STRUCTURES; CLONING;
D O I
10.1002/anie.202104644
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aziridine is a characteristically reactive molecule with increased bioactivity due to its strained ring structure. Here, we investigated the biosynthesis of 2-aminoisobutyric acid (AIB) in Penicillium, and successfully reconstituted the three-step biosynthesis from L-Val to AIB in vitro. This previously unknown aziridine formation pathway proceeded with the non-heme iron and alpha-ketoglutarate-dependent (Fe-II/alpha KG) oxygenase TqaL, followed by aziridine ring opening by the haloalkanoic acid dehalogenase (HAD)-type hydrolase TqaF, and subsequent oxidative decarboxylation by the NovR/CloR-like non-heme iron oxygenase TqaM. Furthermore, the X-ray crystal structure of the C-N bond forming Fe-II/alpha KG oxygenase TqaL was solved at 2.0 angstrom resolution. This work presents the first molecular basis for aziridine biogenesis, thereby expanding the catalytic repertoire of the Fe-II/alpha KG oxygenases. We also report the unique aziridine ring opening by a HAD-type hydrolase and the remarkable oxidative decarboxylation by a non-heme iron oxygenase to produce AIB.
引用
收藏
页码:15827 / 15831
页数:6
相关论文
共 39 条
[1]   Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis [J].
Abe, Ikuro .
CHEMICAL & PHARMACEUTICAL BULLETIN, 2020, 68 (09) :823-831
[2]   Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases [J].
Aik, WeiShen ;
McDonough, Michael A. ;
Thalhammer, Armin ;
Chowdhury, Rasheduzzaman ;
Schofield, Christopher J. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (06) :691-700
[3]   Markers of fitness in a successful enzyme superfamily [J].
Allen, Karen N. ;
Dunaway-Mariano, Debra .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2009, 19 (06) :658-665
[4]  
[Anonymous], 2011, ANGEW CHEM, V123, P1200
[5]  
[Anonymous], 2004, ANGEW CHEM, V116, P4133
[6]  
Brückner H, 2009, CHEM BIODIVERS, V6, P38, DOI 10.1002/cbdv.200800331
[7]   Phytotoxic Tryptoquialanines Produced In Vivo by Penicillium digitatum Are Exported in Extracellular Vesicles [J].
Costa, Jonas Henrique ;
Bazioli, Jaqueline Moraes ;
Barbosa, Luidy Darllan ;
Theodoro dos Santos Junior, Pedro Luis ;
Reis, Flavia C. G. ;
Klimeck, Tabata ;
Crnkovic, Camila Manoel ;
Berlinck, Roberto G. S. ;
Sussulini, Alessandra ;
Rodrigues, Marcio L. ;
Fill, Taicia Pacheco .
MBIO, 2021, 12 (01) :1-16
[8]   Peptaibols as a model for the insertions of chemical modifications [J].
Das, Sanjit ;
Salah, Khoubaib Ben Haj ;
Djibo, Mahamadou ;
Inguimbert, Nicolas .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2018, 658 :16-30
[9]   Recent examples of -ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses [J].
Gao, Shu-Shan ;
Naowarojna, Nathchar ;
Cheng, Ronghai ;
Liu, Xueting ;
Liu, Pinghua .
NATURAL PRODUCT REPORTS, 2018, 35 (08) :792-837
[10]   Fungal Indole Alkaloid Biosynthesis: Genetic and Biochemical Investigation of the Tryptoquialanine Pathway in Penicillium aethiopicum [J].
Gao, Xue ;
Chooi, Yit-Heng ;
Ames, Brian D. ;
Wang, Peng ;
Walsh, Christopher T. ;
Tang, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (08) :2729-2741