Artificial intelligence for microbial biotechnology: beyond the hype

被引:7
作者
Robinson, Serina L. [1 ]
机构
[1] Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Environm Microbiol, Dubendorf, Switzerland
关键词
REPRODUCIBILITY;
D O I
10.1111/1751-7915.13943
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
It has been a landmark year for artificial intelligence (AI) and biotechnology. Perhaps the most noteworthy of these advances was Google DeepMind's AlphaFold2 algorithm which smashed records in protein structure prediction (Jumper et al., 2021, Nature, 596, 583) complemented by progress made by other research groups around the globe (Baek et al., 2021, Science, 373, 871; Zheng et al., 2021, Proteins). For the first time in history, AI achieved protein structure models rivalling the accuracy of experimentally determined structures. The power of accurate protein structure prediction at our fingertips has countless implications for drug discovery, de novo protein design and fundamental research in chemical biology. While acknowledging the significance of these breakthroughs, this perspective aims to cut through the hype and examine some key limitations using AlphaFold2 as a lens to consider the broader implications of AI for microbial biotechnology for the next 15 years and beyond.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 17 条
[1]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[2]  
Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a
[3]  
Bryant P., 2021, IMPROVED PREDICTION, DOI [10.1101/2021.09.15.460468, DOI 10.1101/2021.09.15.460468]
[4]  
EMBLEBI, 2021, TRAIN WEB
[5]   A guide to machine learning for biologists [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Moffat, Lewis ;
Jones, David T. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) :40-55
[6]   Transparency and reproducibility in artificial intelligence [J].
Haibe-Kains, Benjamin ;
Adam, George Alexandru ;
Hosny, Ahmed ;
Khodakarami, Farnoosh ;
Shraddha, Thakkar ;
Kusko, Rebecca ;
Sansone, Susanna-Assunta ;
Tong, Weida ;
Wolfinger, Russ D. ;
Mason, Christopher E. ;
Jones, Wendell ;
Dopazo, Joaquin ;
Furlanello, Cesare ;
Waldron, Levi ;
Wang, Bo ;
McIntosh, Chris ;
Goldenberg, Anna ;
Kundaje, Anshul ;
Greene, Casey S. ;
Broderick, Tamara ;
Hoffman, Michael M. ;
Leek, Jeffrey T. ;
Korthauer, Keegan ;
Huber, Wolfgang ;
Brazma, Alvis ;
Pineau, Joelle ;
Tibshirani, Robert ;
Hastie, Trevor ;
Ioannidis, John P. A. ;
Quackenbush, John ;
Aerts, Hugo J. W. L. .
NATURE, 2020, 586 (7829) :E14-U7
[7]  
Hutson M, 2018, SCIENCE, V359, P725, DOI 10.1126/science.359.6377.725
[8]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[9]  
Mirdita M, 2021, bioRxiv, DOI [10.1101/2021.08.15.456425, 10.1101/2021.08.15.456425, DOI 10.1101/2021.08.15.456425, 10.1101/2021.08.15.456425v2]
[10]   Critical assessment of protein intrinsic disorder prediction [J].
Necci, Marco ;
Piovesan, Damiano ;
Tosatto, Silvio C. E. .
NATURE METHODS, 2021, 18 (05) :472-+