An inequality for regular near polygons

被引:4
作者
Terwilliger, P
Weng, CW
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30050, Taiwan
关键词
near polygon; distance-regular graph; Q-polynomial; dual polar graph; Hamming graph;
D O I
10.1016/j.ejc.2004.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma denote a near polygon distance-regular graph with diameter d greater than or equal to 3, valency k and intersection numbers a(1) > 0, c(2) > 1. Let theta(1) denote the second largest eigenvalue of Gamma. We show theta(1) less than or equal to k - a(1) - c(2)/ c(2) - 1. We show the following (i)-(iii) are equivalent. (i) Equality is attained above; (ii) Gamma is Q-polynomial with respect to theta(1); (iii) Gamma is a dual polar graph or a Hamming graph. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 10 条
[1]  
Bannai E, 1984, Algebraic Combinatorics I: Association Schemes
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]  
Cameron P. J., 1982, GEOMETRIAE DEDICATA, V12, P75
[4]   CHARACTERIZATION OF H(N,Q) BY THE PARAMETERS [J].
EGAWA, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 31 (02) :108-125
[5]  
NEUMAIER A, 1985, J REINE ANGEW MATH, V357, P182
[6]  
SLOANE N, 1975, THEORY APPL SPECIAL
[7]   SOME Q-KRAWTCHOUK POLYNOMIALS ON CHEVALLEY-GROUPS [J].
STANTON, D .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (04) :625-662
[8]   A NEW INEQUALITY FOR DISTANCE-REGULAR GRAPHS [J].
TERWILLIGER, P .
DISCRETE MATHEMATICS, 1995, 137 (1-3) :319-332
[9]   ROOT SYSTEMS AND THE JOHNSON AND HAMMING GRAPHS [J].
TERWILLIGER, P .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (01) :73-102
[10]   D-bounded distance-regular graphs [J].
Weng, CW .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :211-229