Sensor data integration for indoor human tracking

被引:16
作者
Corrales, J. A. [1 ]
Candelas, F. A. [1 ]
Torres, F. [1 ]
机构
[1] Univ Alicante, Phys Syst Engn & Signal Theory Dept, San Vicente Del Raspeig 03690, Spain
关键词
Indoor location; Motion capture; Human-robot interaction; Kalman filter; Particle filter; PARTICLE FILTER; FUSION;
D O I
10.1016/j.robot.2010.05.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A human tracking system based on the integration of the measurements from an inertial motion capture system and a UWB (Ultra-Wide Band) location system has been developed. On the one hand, the rotational measurements from the inertial system are used to track precisely all limbs of the body of the human. On the other hand, the translational measurements from both systems are combined by three different fusion algorithms (a Kalman filter, a particle filter and a combination of both) in order to obtain a precise global localization of the human in the environment. Several experiments have been performed to compare their accuracy and computational efficiency (C) 2010 Elsevier B.V. All rights reserved
引用
收藏
页码:931 / 939
页数:9
相关论文
共 19 条
[1]   Hybrid three-dimensional camera pose estimation using particle filter sensor fusion [J].
Ababsa, Fakhr-Eddine ;
Mallem, Malik .
ADVANCED ROBOTICS, 2007, 21 (1-2) :165-181
[2]  
Alami R., 2006, 2006 IEEERSJ INT C I, P1, DOI DOI 10.1109/IROS.2006.6936985
[3]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[4]   GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects [J].
Caron, Francois ;
Duflos, Emmanuel ;
Pomorski, Denis ;
Vanheeghe, Philippe .
INFORMATION FUSION, 2006, 7 (02) :221-230
[5]   Improved particle filter for nonlinear problems [J].
Carpenter, J ;
Clifford, P ;
Fearnhead, P .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) :2-7
[6]  
Corrales J. A., 2008, P 2008 3 ACM IEEE IN, P193, DOI 10.1145/1349822.1349848
[7]   Analysis and modeling of inertial sensors using Allan variance [J].
EI-Sheimy, Naser ;
Hou, Haiying ;
Niu, Xiaoji .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (01) :140-149
[8]   Bayesian filtering for location estimation [J].
Fox, D ;
Hightower, J ;
Liao, L ;
Schulz, D ;
Borriello, G .
IEEE PERVASIVE COMPUTING, 2003, 2 (03) :24-33
[9]   Pedestrian tracking with shoe-mounted inertial sensors [J].
Foxlin, E .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2005, 25 (06) :38-46
[10]   Intertial head-tracker sensor fusion by a complementary separate-bias Kalman filter [J].
Foxlin, E .
PROCEEDINGS OF THE IEEE 1996 VIRTUAL REALITY ANNUAL INTERNATIONAL SYMPOSIUM, 1996, :185-&