The local discontinuous Galerkin method for linearized incompressible fluid flow:: a review

被引:56
作者
Cockburn, B
Kanschat, G
Schötzau, D
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
[3] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.compfluid.2003.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we review the development of the so-called local discontinuous Galerkin method for linearized incompressible fluid flow. This is a stable, high-order accurate and locally conservative finite element method whose approximate solution is discontinuous across inter-element boundaries; this property renders the method ideally suited for hp-adaptivity. In the context of the Oseen problem, we present the method and discuss its stability and convergence properties. We also display numerical experiments that show that the method behaves well for a wide range of Reynolds numbers. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 38 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   PIECEWISE SOLENOIDAL VECTOR-FIELDS AND THE STOKES PROBLEM [J].
BAKER, GA ;
JUREIDINI, WN ;
KARAKASHIAN, OA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1466-1485
[3]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[4]  
Baumann CE, 1999, INT J NUMER METH FL, V31, P79, DOI 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO
[5]  
2-C
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]   Performance of discontinuous Galerkin methods for elliptic PDEs [J].
Castillo, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :524-547
[8]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]   THE RUNGE-KUTTA LOCAL PROJECTION RHO-1-DISCONTINUOUS-GALERKIN FINITE-ELEMENT METHOD FOR SCALAR CONSERVATION-LAWS [J].
COCKBURN, B ;
SHU, CW .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (03) :337-361