Transient chaotic behaviour versus periodic motion of a parametric pendulum by recurrence plots

被引:28
作者
Litak, Grzegorz [1 ]
Wiercigroch, Marian [2 ]
Horton, Bryan W. [2 ]
Xu, Xu [2 ]
机构
[1] Lublin Univ Technol, Fac Mech Engn, PL-20618 Lublin, Poland
[2] Univ Aberdeen, Sch Engn, Ctr Appl Dynam Res, Aberdeen AB24 3UE, Scotland
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2010年 / 90卷 / 01期
基金
欧盟第七框架计划;
关键词
Parametric pendulum; recurrence plot; chaotic vibration; ROTATIONAL MOTION; OSCILLATIONS; PREDICTION; THRESHOLD; DYNAMICS; EQUATION;
D O I
10.1002/zamm.200900290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigated dynamic responses of a parametric pendulum obtained experimentally. Using the recurrence plot technique designed to analyze experimental time series we have distinguished different types of motion. This method, supplemented by recurrence quantification analysis (RQA), has been used to identify oscillations, rotations, and transient chaotic vibrations for relatively short time series composed of only few cycles. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:33 / 41
页数:9
相关论文
共 57 条
[21]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[22]   Practical implementation of nonlinear time series methods: The TISEAN package [J].
Hegger, R ;
Kantz, H ;
Schreiber, T .
CHAOS, 1999, 9 (02) :413-435
[23]   Transient tumbling chaos and damping identification for parametric pendulum [J].
Horton, Bryan ;
Wiercigroch, Marian ;
Xu, Xu .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1866) :767-784
[24]   Complex dynamics in pendulum equation with parametric and external excitations II [J].
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China ;
不详 ;
不详 .
Int. J. Bifurcation Chaos, 2006, 10 (3053-3078)
[25]  
Kantz H., 1997, Nonlinear Time Series Anaysis
[26]   Detection of the type of intermittency using characteristic patterns in recurrence plots [J].
Klimaszewska, Katarzyna ;
Zebrowski, Jan J. .
PHYSICAL REVIEW E, 2009, 80 (02)
[27]   A unit on oscillations, determinism and chaos for introductory physics students [J].
Laws, PW .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (04) :446-452
[28]   CHAOTIC BEHAVIOR OF A PARAMETRICALLY EXCITED DAMPED PENDULUM [J].
LEVEN, RW ;
KOCH, BP .
PHYSICS LETTERS A, 1981, 86 (02) :71-74
[29]   Vibration of externally-forced Froude pendulum [J].
Litak, G ;
Spuz-Szpos, G ;
Szabelski, K ;
Warminski, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (03) :561-570
[30]   Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions [J].
Litak, Grzegorz ;
Borowiec, Marek ;
Wiercigroch, Marian .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (03) :259-265