On the measurement of effective powder layer thickness in laser powder-bed fusion additive manufacturing of metals

被引:44
作者
Mahmoodkhani, Yahya [1 ]
Ali, Usman [1 ]
Shahabad, Shahriar Imani [1 ]
Kasinathan, Adhitan Rani [1 ]
Esmaeilizadeh, Reza [1 ]
Keshavarzkermani, Ali [1 ]
Marzbanrad, Ehsan [1 ]
Toyserkani, Ehsan [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Multiscale Addit Mfg Lab, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Additive manufacturing; Laser-powder bed fusion; Effective layer thickness; DENSITY;
D O I
10.1007/s40964-018-0064-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In laser powder-bed fusion (LPBF), the actual thickness of powder particles that spread on solidified zones, so-called effective layer thickness (ELT), is higher than the nominal layer thickness. The source cause of this discrepancy is the fact that powder particles substantially shrink after selective melting, followed by solidification. ELT, as an unknown parameter, depends on process parameters and material properties. In this study, an effective method to measure ELT is proposed and applied to 17-4 PH stainless steel for a nominal build layer thickness of 20 mu m. The measured ELT was larger than 100 mu m, which is far beyond the values reported in the literature. Results obtained from the current study show the effect of applying the ELT rather than the nominal build layer thickness in numerical modeling studies as well as understanding the governing physics in the LPBF process.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 16 条
  • [1] On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes
    Ali, Usman
    Mahmoodkhani, Yahya
    Shahabad, Shahriar Imani
    Esmaeilizadeh, Reza
    Liravi, Farzad
    Sheydaeian, Esmat
    Huang, Ke Yin
    Marzbanrad, Ehsan
    Vlasea, Mihaela
    Toyserkani, Ehsan
    [J]. MATERIALS & DESIGN, 2018, 155 : 495 - 501
  • [2] Evaluation of Powder Layer Density for the Selective Laser Melting (SLM) Process
    Choi, Joon-Phil
    Shin, Gi-Hun
    Lee, Hak-Sung
    Yang, Dong-Yeol
    Yang, Sangsun
    Lee, Chang-Woo
    Brochu, Mathieu
    Yu, Ji-Hun
    [J]. MATERIALS TRANSACTIONS, 2017, 58 (02) : 294 - 297
  • [3] A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties
    Fayazfar, Haniyeh
    Salarian, Mehrnaz
    Rogalsky, Allan
    Sarker, Dyuti
    Russo, Paola
    Paserin, Vlad
    Toyserkani, Ehsan
    [J]. MATERIALS & DESIGN, 2018, 144 : 98 - 128
  • [4] Gurtler F.J., 2014, Solid freeform symposium, VTexas, P1099
  • [5] Measurement of powder bed density in powder bed fusion additive manufacturing processes
    Jacob, G.
    Donmez, A.
    Slotwinski, J.
    Moylan, S.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (11)
  • [6] Karapatis NP, 1999, SOL FREEFORM FABRIC, P255
  • [7] Thermal and molten pool model in selective laser melting process of Inconel 625
    Kundakcioglu, Erdem
    Lazoglu, Ismail
    Poyraz, Ozgur
    Yasa, Evren
    Cizicioglu, Nuri
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 95 (9-12) : 3977 - 3984
  • [8] Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel
    Ma, Mingming
    Wang, Zemin
    Gao, Ming
    Zeng, Xiaoyan
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 215 : 142 - 150
  • [9] Residual stress analysis of laser spot welding of steel sheets
    Martinson, P.
    Daneshpour, S.
    Kocak, M.
    Riekehr, S.
    Staron, P.
    [J]. MATERIALS & DESIGN, 2009, 30 (09) : 3351 - 3359
  • [10] Experimental studies on selective laser melting of metallic parts
    Meier, H.
    Haberland, Ch.
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2008, 39 (09) : 665 - 670