Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene

被引:44
作者
Friedman, Beth [1 ]
Brophy, Patrick [1 ]
Brune, William H. [2 ]
Farmer, Delphine K. [1 ]
机构
[1] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[2] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA
关键词
SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETER; HIGH-RESOLUTION; ORGANOSULFATE FORMATION; NO3; OXIDATION; OZONOLYSIS; SULFATE; MONOTERPENES; CHEMISTRY; TRENDS;
D O I
10.1021/acs.est.5b05010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In order to probe how anthropogenic pollutants can impact the atmospheric oxidation of biogenic emissions, we investigated how sulfur dioxide (SO2) perturbations impact the oxidation of two monoterpenes, alpha- and beta-pinene. We used chemical ionization mass spectrometry to examine changes in both individual molecules and gas-phase bulk properties of oxidation products as a function of SO2 addition. SO2 perturbations impacted the oxidation systems of alpha-and beta-pinene, leading to an ensemble of products with a lesser degree of oxygenation than unperturbed systems. These changes may be due to shifts in the OH:HO2 ratio from SO2 oxidation and/or to SO3 reacting directly with organic molecules. Van Krevelen diagrams suggest a shift from gas-phase functionalization by alcohol/peroxide groups to functionalization by carboxylic acid or carbonyl groups, consistent with a decreased OH:HO2 ratio. Increasing relative humidity dampens the impact of the perturbation. This decrease in oxygenation may impact secondary organic aerosol formation in regions dominated by biogenic emissions with nearby SO2 sources. We observed sulfur-containing organic compounds following SO2 perturbations of monoterpene oxidation; whether these are the result of photochemistry or an instrumental artifact from ion molecule clustering remains uncertain. However, our results demonstrate that the two monoterpene isomers produce unique suites of oxidation products.
引用
收藏
页码:1269 / 1279
页数:11
相关论文
共 73 条
[1]   High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing [J].
Aljawhary, D. ;
Lee, A. K. Y. ;
Abbatt, J. P. D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (11) :3211-3224
[2]   Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry [J].
Altieri, K. E. ;
Turpin, B. J. ;
Seitzinger, S. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2533-2542
[3]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF THE OH-RADICAL WITH A SERIES OF MONOTERPENES AT 294 +/- 1-K [J].
ATKINSON, R ;
ASCHMANN, SM ;
PITTS, JN .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1986, 18 (03) :287-299
[4]   Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing [J].
Attwood, A. R. ;
Washenfelder, R. A. ;
Brock, C. A. ;
Hu, W. ;
Baumann, K. ;
Campuzano-Jost, P. ;
Day, D. A. ;
Edgerton, E. S. ;
Murphy, D. M. ;
Palm, B. B. ;
McComiskey, A. ;
Wagner, N. L. ;
de Sa, S. S. ;
Ortega, A. ;
Martin, S. T. ;
Jimenez, J. L. ;
Brown, S. S. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (21) :7701-7709
[5]   A field-deployable, chemical ionization time-of-flight mass spectrometer [J].
Bertram, T. H. ;
Kimmel, J. R. ;
Crisp, T. A. ;
Ryder, O. S. ;
Yatavelli, R. L. N. ;
Thornton, J. A. ;
Cubison, M. J. ;
Gonin, M. ;
Worsnop, D. R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (07) :1471-1479
[6]   Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations [J].
Boy, M. ;
Mogensen, D. ;
Smolander, S. ;
Zhou, L. ;
Nieminen, T. ;
Paasonen, P. ;
Plass-Duelmer, C. ;
Sipila, M. ;
Petaja, T. ;
Mauldin, L. ;
Berresheim, H. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (07) :3865-3879
[7]   A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study [J].
Brophy, P. ;
Farmer, D. K. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (07) :2945-2959
[8]   Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition [J].
Bruns, E. A. ;
El Haddad, I. ;
Keller, A. ;
Klein, F. ;
Kumar, N. K. ;
Pieber, S. M. ;
Corbin, J. C. ;
Slowik, J. G. ;
Brune, W. H. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (06) :2315-2332
[9]   Modeling aerosol formation in alpha-pinene photo-oxidation experiments [J].
Capouet, M. ;
Mueller, J. -F. ;
Ceulemans, K. ;
Compernolle, S. ;
Vereecken, L. ;
Peeters, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D2)
[10]   Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water [J].
Carlton, A. G. ;
Turpin, B. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (20) :10203-10214