Iris Segmentation Using Geodesic Active Contours

被引:170
|
作者
Shah, Samir [1 ]
Ross, Arun [2 ]
机构
[1] LG Elect USA Inc, Iris Technol Div, Cranbury, NJ 08512 USA
[2] W Virginia Univ, Morgantown, WV 26506 USA
关键词
Geodesic active contours (GACs); iriscodes; iris recognition; iris segmentation; level sets; snakes; RECOGNITION;
D O I
10.1109/TIFS.2009.2033225
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The richness and apparent stability of the iris texture make it a robust biometric trait for personal authentication. The performance of an automated iris recognition system is affected by the accuracy of the segmentation process used to localize the iris structure. Most segmentation models in the literature assume that the pupillary, limbic, and eyelid boundaries are circular or elliptical in shape. Hence, they focus on determining model parameters that best fit these hypotheses. However, it is difficult to segment iris images acquired under nonideal conditions using such conic models. In this paper, we describe a novel iris segmentation scheme employing geodesic active contours (GACs) to extract the iris from the surrounding structures. Since active contours can 1) assume any shape and 2) segment multiple objects simultaneously, they mitigate some of the concerns associated with traditional iris segmentation models. The proposed scheme elicits the iris texture in an iterative fashion and is guided by both local and global properties of the image. The matching accuracy of an iris recognition system is observed to improve upon application of the proposed segmentation algorithm. Experimental results on the CASIA v3.0 and WVU nonideal iris databases indicate the efficacy of the proposed technique.
引用
收藏
页码:824 / 836
页数:13
相关论文
共 50 条
  • [21] Geodesic Active Contours with Adaptive Configuration for Cerebral Vessel and Aneurysm Segmentation
    Yang, Xin
    Cheng, K. T. Tim
    Chien, Aichi
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3209 - 3214
  • [22] Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion
    Wang, Weiming
    Zhu, Lei
    Qin, Jing
    Chui, Yim-Pan
    Li, Bing Nan
    Heng, Pheng-Ann
    OPTICS AND LASERS IN ENGINEERING, 2014, 54 : 105 - 116
  • [23] Lumen Segmentation and Visualization of Abdominal Aorta Using Geodesic Active Contours for Intravascular Surgical Simulation
    Yang, Fan
    Hou, Zeng-Guang
    Mi, Shao-Hua
    Bian, Gui-Bin
    Xie, Xiao-Liang
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 2356 - 2361
  • [24] Segmentation of bone in clinical knee MRI using texture-based geodesic active contours
    Lorigo, LM
    Faugeras, O
    Grimson, WEL
    Keriven, R
    Kikinis, R
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI'98, 1998, 1496 : 1195 - 1204
  • [25] Efficient approach for non-ideal iris segmentation using improved particle swarm optimisation-based multilevel thresholding and geodesic active contours
    Rapaka, Satish
    Kumar, Pullakura Rajesh
    IET IMAGE PROCESSING, 2018, 12 (10) : 1721 - 1729
  • [26] Testing geodesic active contours
    Caro, A.
    Alonso, T.
    Rodriguez, P. G.
    Duran, M. L.
    Avila, M. M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2007, 4478 : 64 - +
  • [27] Fast geodesic active contours
    Goldenberg, R
    Kimmel, R
    Rivlin, E
    Rudzsky, M
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 34 - 45
  • [28] Fast geodesic active contours
    Goldenberg, R
    Kimmel, R
    Rivlin, E
    Rudzsky, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (10) : 1467 - 1475
  • [29] DIRECTIONAL GEODESIC ACTIVE CONTOURS
    Gallego, G.
    Ronda, J. I.
    Valdes, A.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2561 - 2564
  • [30] Vander Lugt Correlator based active contours for iris segmentation and tracking
    Ouabida, Elhoussaine
    Essadique, Abdelaziz
    Bouzid, Abdenbi
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 71 : 383 - 395