Homogenization Theory for a Replenishing Passive Scalar Field

被引:4
作者
Kramer, Peter R. [1 ]
Keating, Shane R. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Homogenization; Turbulent transport; Source; Pumping; STIELTJES INTEGRAL-REPRESENTATION; EFFECTIVE DIFFUSIVITY; ADVECTION; BOUNDS;
D O I
10.1007/s11401-009-0196-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow. The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink). The basic structure of the homogenized equations carries over, but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source. The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 30 条
[1]   Chaotic stirring by a mesoscale surface-ocean flow [J].
Abraham, ER ;
Bowen, MM .
CHAOS, 2002, 12 (02) :373-381
[2]   AN INTEGRAL-REPRESENTATION AND BOUNDS ON THE EFFECTIVE DIFFUSIVITY IN PASSIVE ADVECTION BY LAMINAR AND TURBULENT FLOWS [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :339-391
[3]   STIELTJES INTEGRAL-REPRESENTATION AND EFFECTIVE DIFFUSIVITY BOUNDS FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (07) :753-755
[4]   STIELTJES INTEGRAL-REPRESENTATION OF EFFECTIVE DIFFUSIVITIES IN TIME-DEPENDENT FLOWS [J].
AVELLANEDA, M ;
VERGASSOLA, M .
PHYSICAL REVIEW E, 1995, 52 (03) :3249-3251
[5]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[6]   The physics of subgrid scales in numerical simulations of stellar convection: Are they dissipative, advective, or diffusive? [J].
Canuto, VM .
ASTROPHYSICAL JOURNAL, 2000, 541 (02) :L79-L82
[7]  
Cioranescu D., 1999, INTRO HOMOGENIZATION
[8]  
Fannjiang A, 1996, PROBAB THEORY REL, V105, P279, DOI 10.1007/BF01192211
[9]  
Folland G. B., 1995, Introduction to Partial Differential Equations, V2
[10]  
GENT PR, 1995, J PHYS OCEANOGR, V25, P463, DOI 10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO