A boundary value problem for a kinetic model describing electron flow in a semiconductor

被引:0
作者
Drago, CR [1 ]
Majorana, A [1 ]
机构
[1] Univ Catania, Dipartmento Matemat, I-95125 Catania, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A kinetic model describing the evolution of an electron gas in a semiconductor device is analysed. It arises from the Boltzmann equation by using a spherical harmonic expansion, and it involves difference-partial differential equations. A boundary value problem is proposed and an existence and uniqueness theorem is proved for the stationary one-dimensional case. A simple asymptotic model is derived and for this a maximum principle is shown. Copyright (C) 2000 John Whey & Sons, Ltd.
引用
收藏
页码:735 / 750
页数:16
相关论文
共 12 条
  • [1] BOUNDARY VALUE PROBLEMS IN BOLTZMANN MODELLING OF HOT ELECTRON TRANSPORT.
    Cox, W.
    [J]. Solid-State Electronics, 1987, 30 (04) : 365 - 374
  • [2] FERRY DK, 1982, HDB SEMICONDUCTORS, V1, P563
  • [3] Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
  • [4] Jacoboni C., 1989, The Monte Carlo method for semiconductor device simulation, V1st, DOI DOI 10.1007/978-3-7091-6963-6
  • [5] LIOTTA SF, 1998, ENERGY KINETIC EQUAT
  • [6] MAJORANA A, 1994, COMMENT MATH U CAROL, V35, P451
  • [7] MAJORANA A, 1999, MATEMATICHE, V53, P331
  • [8] Markowich P. A., 1990, SEMICONDUCTOR EQUATI
  • [9] Piccinini L. C., 1984, Ordinary Differential Equations in Rn
  • [10] Smith H., 1989, TRANSPORT PHENOMENA