Advances in Hybrid Brain-Computer Interfaces: Principles, Design, and Applications

被引:24
作者
Li, Zina [1 ]
Zhang, Shuqing [1 ]
Pan, Jiahui [1 ]
机构
[1] South China Normal Univ, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BCI SYSTEM; CURSOR CONTROL; P300; SSVEP; DESYNCHRONIZATION; DIRECTION; SPEED;
D O I
10.1155/2019/3807670
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional brain-computer interface (BCI) systems have been facing two fundamental challenges: the lack of high detection performance and the control command problem. To this end, the researchers have proposed a hybrid brain-computer interface (hBCI) to address these challenges. This paper mainly discusses the research progress of hBCI and reviews three types of hBCI, namely, hBCI based on multiple brain models, multisensory hBCI, and hBCI based on multimodal signals. By analyzing the general principles, paradigm designs, experimental results, advantages, and applications of the latest hBCI system, we found that using hBCI technology can improve the detection performance of BCI and achieve multidegree/multifunctional control, which is significantly superior to single-mode BCIs.
引用
收藏
页数:9
相关论文
共 52 条
[1]   A four-choice hybrid P300/SSVEP BCI for improved accuracy [J].
Allison, Brendan Z. ;
Jin, Jing ;
Zhang, Yu ;
Wang, Xingyu .
BRAIN-COMPUTER INTERFACES, 2014, 1 (01) :17-26
[2]  
Allison BZ, 2010, FRONT COLLECT, P357, DOI 10.1007/978-3-642-02091-9_19
[3]   Exploring Combinations of Auditory and Visual Stimuli for Gaze-Independent Brain-Computer Interfaces [J].
An, Xingwei ;
Hoehne, Johannes ;
Ming, Dong ;
Blankertz, Benjamin .
PLOS ONE, 2014, 9 (10)
[4]  
[Anonymous], FRONTIERS NEUROSCIEN
[5]   P300 audio-visual speller [J].
Belitski, A. ;
Farquhar, J. ;
Desain, P. .
JOURNAL OF NEURAL ENGINEERING, 2011, 8 (02)
[6]   A speed and direction-based cursor control system with P300 and SSVEP [J].
Bi, Luzheng ;
Lian, Jinling ;
Jie, Ke ;
Lai, Ru ;
Liu, Yili .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 14 :126-133
[7]   Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks [J].
Buccino, Alessio Paolo ;
Keles, Hasan Onur ;
Omurtag, Ahmet .
PLOS ONE, 2016, 11 (01)
[8]  
CHAI NN, 2019, OXID MED CELL LONGEV, V2019
[9]   Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification [J].
Chiarelli, Antonio Maria ;
Croce, Pierpaolo ;
Merla, Arcangelo ;
Zappasodi, Filippo .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (03)
[10]   Design of a Multimodal EEG-based Hybrid BCI System with Visual Servo Module [J].
Duan, Feng ;
Lin, Dongxue ;
Li, Wenyu ;
Zhang, Zhao .
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2015, 7 (04) :332-341