An Approach for a Spatial Data Attribute Similarity Measure Based on Granular Computing Closeness

被引:7
作者
Liao, Weihua [1 ]
Hou, Daizhong [2 ]
Jiang, Weiguo [3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Nanning Normal Univ, Sch Math & Stadist, Nanning 530001, Peoples R China
[3] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 13期
基金
中国国家自然科学基金;
关键词
closeness; granular computing; similarity measure; spatial data; land use; DISTANCE; MODELS;
D O I
10.3390/app9132628
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a spatial data attribute similarity measure method based on granular computing closeness. This method uses the distance and membership degree of different index levels of spatial entities to measure the similarity of attributes. It not only reflects the degree of similarity of spatial entity types at different index levels but also reflects the integration similarity between spatial entity types under a comprehensive index. This method embodies the layered idea of granular computing and can provide a basis for spatial problem decision making and for spatial entity classification. Finally, the feasibility and applicability of the method are verified by taking the similarity measure of the land-use type attribute in Guangxi as an example.
引用
收藏
页数:15
相关论文
共 34 条
  • [1] [白雪娇 Bai Xuejiao], 2015, [农业机械学报, Transactions of the Chinese Society for Agricultural Machinery], V46, P345
  • [2] Granular computing models and methods based on the spatial granulation
    Butenkov, S.
    Zhukov, A.
    Nagorov, A.
    Krivsha, N.
    [J]. XII INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2016, (INTELS 2016), 2017, 103 : 295 - 302
  • [3] THE INFLUENCE OF VERTICAL AND HORIZONTAL HABITAT STRUCTURE ON NATIONWIDE PATTERNS OF AVIAN BIODIVERSITY
    Culbert, Patrick D.
    Radeloff, Volker C.
    Flather, Curtis H.
    Kellndorfer, Josef M.
    Rittenhouse, Chadwick D.
    Pidgeon, Anna M.
    [J]. AUK, 2013, 130 (04): : 656 - 665
  • [4] Ding H., 2004, THESIS
  • [5] A robust framework for content-based retrieval by spatial similarity in image databases
    El-Kwae, EA
    Kabuka, MR
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1999, 17 (02) : 174 - 198
  • [6] Using satellite data to monitor land-use land-cover change in North-eastern Latvia
    Fonji, Simon Foteck
    Taff, Gregory N.
    [J]. SPRINGERPLUS, 2014, 3 : 1 - 15
  • [7] A Moment-Based Shape Similarity Measurement for Areal Entities in Geographical Vector Data
    Fu, Zhongliang
    Fan, Liang
    Yu, Zhiqiang
    Zhou, Kaichun
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (06):
  • [8] Species spatial distribution analysis using nearest neighbor methods: aggregation and self-similarity
    Gao, Meng
    Wang, Xinxiu
    Wang, De
    [J]. ECOLOGICAL RESEARCH, 2014, 29 (02) : 341 - 349
  • [9] Holt A., 2000, COMPLEX INT, V7, P1
  • [10] VISUAL-PATTERN RECOGNITION BY MOMENT INVARIANTS
    HU, M
    [J]. IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (02): : 179 - &