A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens-Bogdanov normal form

被引:13
作者
Algaba, Antonio [1 ]
Chung, Kwok-Wai [2 ]
Qin, Bo-Wei [2 ]
Rodriguez-Luis, Alejandro J. [3 ]
机构
[1] Univ Huelva, Ctr Estudios Avanzados Fis Matemat & Computac, Dept Ciencias Integradas, Huelva 21071, Spain
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Univ Seville, Dept Matemat Aplicada 2, ETS Ingenieros, Camino Descubrimientos S-N, Seville 41092, Spain
关键词
Nonlinear time transformation; Takens-Bogdanov bifurcation; Melnikov function; Homoclinic orbit; LINDSTEDT-POINCARE METHODS; OSCILLATIONS; CONNECTIONS;
D O I
10.1007/s11071-019-05025-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we present an algorithm based on the nonlinear time transformation method to approximate homoclinic orbits in planar autonomous nonlinear oscillators. With this approach, a unique perturbation solution up to any desired order can be obtained for them using trigonometric functions. To demonstrate its efficiency, the method is applied to calculate the homoclinic connection, both in the phase space and in the parameter space, of the versal unfolding of the nondegenerate Takens-Bogdanov singularity. Our approach considerably improves the results obtained so far by other methods (Melnikov, Poincare-Lindstedt, regular perturbations, multiple scales, etc.). The approximations achieved to different orders are confirmed by numerical continuation.
引用
收藏
页码:979 / 990
页数:12
相关论文
共 33 条
[1]   Initialization of Homoclinic Solutions near Bogdanov-Takens Points: Lindstedt-Poincare Compared with Regular Perturbation Method [J].
Al-Hdaibat, B. ;
Govaerts, W. ;
Kuznetsov, Yu. A. ;
Meijer, H. G. E. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02) :952-980
[2]   A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits [J].
Algaba, A. ;
Gamero, E. ;
Garcia, C. ;
Merino, M. .
NONLINEAR DYNAMICS, 2007, 48 (1-2) :55-76
[3]   A bifurcation analysis of planar nilpotent reversible systems [J].
Algaba, A. ;
Freire, E. ;
Gamero, E. ;
Garcia, C. .
NONLINEAR DYNAMICS, 2017, 87 (02) :835-849
[4]  
Algaba A, 2005, Commun Nonlinear Sci Numer Simul, V10, P169
[5]  
Bazykin A, 1998, Nonlinear dynamics of interacting populations, V11
[6]   Asymptotics of homoclinic bifurcation in a three-dimensional system [J].
Belhaq, M ;
Houssni, M ;
Freire, E ;
Rodríguez-Luis, AJ .
NONLINEAR DYNAMICS, 2000, 21 (02) :135-155
[7]   Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method [J].
Belhaq, M ;
Fiedler, B ;
Lakrad, F .
NONLINEAR DYNAMICS, 2000, 23 (01) :67-86
[8]   A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method [J].
Cao, Y. Y. ;
Chung, K. W. ;
Xu, J. .
NONLINEAR DYNAMICS, 2011, 64 (03) :221-236
[9]   A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators [J].
Chen, S. H. ;
Chen, Y. Y. ;
Sze, K. Y. .
JOURNAL OF SOUND AND VIBRATION, 2009, 322 (1-2) :381-392
[10]   Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method [J].
Chen, Y. Y. ;
Chen, S. H. .
NONLINEAR DYNAMICS, 2009, 58 (1-2) :417-429