Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damage-induced neuronal death

被引:44
作者
Lee, Jong-Hee [1 ]
Kim, Kyong-Tai [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Div Mol & Life Sci, Pohang 790784, South Korea
关键词
D O I
10.1002/jcp.20899
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
DNA damage is known to be an initiator of neuronal death in neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. The mechanism linking DNA damage and neuronal death is not completely understood. Here, we delineate the mechanism by which neuronal death evoked by DNA damage is controlled. Using mouse cortical neurons and SH-SY5Y human neuroblastoma cells, we identify a critical role of ERK signaling in neuronal death induced by DNA damage upon mitomycin C treatment. In addition, we provide evidence that the ERK signaling regulates Cyclin-dependent kinase 5 (Cdk5) activity and stability of tumor suppressor p53. Mitomycin C increased expression of p35, a specific activator of neuronal Cdk5 in an ERK1/2-dependent manner. Moreover, stability of p53 was increased by its phosphorylation on Ser33 and Ser46 by Cdk5, leading to neuronal death. Finally, we show that activated ERK induced increased expression of the Egr-1 transcription factor, which then bound to the promoter region of p35. We suggest subsequent increase of p35 expression and Cdk5 activity contribute to p53-dependent neuronal death. Thus, the present finding provides a new insight into a molecular mechanism underlying DNA damage-induced neuronal death.
引用
收藏
页码:784 / 797
页数:14
相关论文
共 53 条
[1]   Differential activation of p53 by the various adducts of mitomycin C [J].
Abbas, T ;
Olivier, M ;
Lopez, J ;
Houser, S ;
Xiao, G ;
Kumar, GS ;
Tomasz, M ;
Bargonetti, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :40513-40519
[2]   DNA strand breaks in Alzheimer's disease [J].
Adamec, E ;
Vonsattel, JP ;
Nixon, RA .
BRAIN RESEARCH, 1999, 849 (1-2) :67-77
[3]  
Ahuja HS, 1997, DEV GENET, V21, P258, DOI 10.1002/(SICI)1520-6408(1997)21:4<258::AID-DVG3>3.0.CO
[4]  
2-6
[5]   Nuclear factor-κB modulates the p53 response in neurons exposed to DNA damage [J].
Aleyasin, H ;
Cregan, SP ;
Iyirhiaro, G ;
O'Hare, MJ ;
Callaghan, SM ;
Slack, RS ;
Park, DS .
JOURNAL OF NEUROSCIENCE, 2004, 24 (12) :2963-2973
[6]   Cell cycle regulation of neuronal apoptosis in development and disease [J].
Becker, EBE ;
Bonni, A .
PROGRESS IN NEUROBIOLOGY, 2004, 72 (01) :1-25
[7]  
Beckmann AM, 1997, NEUROCHEM INT, V31, P477, DOI 10.1016/S0197-0186(96)00136-2
[8]   Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress [J].
Buschmann, T ;
Potapova, O ;
Bar-Shira, A ;
Ivanov, VN ;
Fuchs, SY ;
Henderson, S ;
Fried, VA ;
Minamoto, T ;
Alarcon-Vargas, D ;
Pincus, MR ;
Gaarde, WA ;
Holbrook, NJ ;
Shiloh, Y ;
Ronai, Z .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (08) :2743-2754
[9]   Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation [J].
Chen, F ;
Wang, Q ;
Wang, XN ;
Studzinski, GP .
CANCER RESEARCH, 2004, 64 (15) :5425-5433
[10]  
Cheung Eric C C, 2004, Sci STKE, V2004, pPE45