Well-posedness and scattering of inhomogeneous cubic-quintic NLS

被引:2
|
作者
Cho, Yonggeun [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 54896, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
关键词
NONLINEAR SCHRODINGER-EQUATIONS; BLOW-UP SOLUTIONS; STANDING WAVES; NONEXISTENCE; INSTABILITY;
D O I
10.1063/1.5053131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider inhomogeneous cubic-quintic nonlinear Schrodinger (ICQNLS) in space dimension d = 3, iu(t) = -Delta u + K-1(x)|u|(2)u + K-2(x)|u|(4)u. We study local well-posedness, finite time blowup, and small data scattering and nonscattering for the ICQNLS when K1,K2 is an element of C4(R3\{0}) satisfy growth condition |partial derivative jKi(x)|less than or similar to|x|bi-j(j=0,1,2,3,4) for some b(i) >= 0 and for x not equal 0. To this end, we use the Sobolev inequality for the functions f is an element of H-n (n = 1, 2) such that |L|lfHn<infinity(l=1,2), where L is the angular momentum operator defined by L = x x (-i del).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Small data scattering of the inhomogeneous cubic-quintic NLS in 2 dimensions
    Cho, Yonggeun
    Lee, Kiyeon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 142 - 157
  • [2] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING QUINTIC NLS IN THREE DIMENSIONS
    Killip, Rowan
    Visan, Monica
    ANALYSIS & PDE, 2012, 5 (04): : 855 - 885
  • [3] Local well-posedness of a generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Adams, R.
    OPTIK, 2021, 248
  • [4] SCATTERING FOR THE CUBIC-QUINTIC NLS: CROSSING THE VIRIAL THRESHOLD
    Killip, Rowan
    Murphy, Jason
    Visan, Monica
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) : 5803 - 5812
  • [5] Almost sure local well-posedness for the supercritical quintic NLS
    Brereton, Justin
    TUNISIAN JOURNAL OF MATHEMATICS, 2019, 1 (03) : 427 - 453
  • [6] Global Well-Posedness for Cubic NLS with Nonlinear Damping
    Antonelli, Paolo
    Sparber, Christof
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) : 2310 - 2328
  • [8] Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation
    Campos, Luccas
    Correia, Simao
    Farah, Luiz Gustavo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [9] LOCAL WELL-POSEDNESS OF THE FRACTIONAL INHOMOGENEOUS NLS IN SOBOLEV SPACES
    Ghanmi, Radhia
    Boulaaras, Salah
    Saanouni, Tarek
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (10): : 3035 - 3045
  • [10] Global well-posedness for the cubic fractional NLS on the unit disk
    Sy, Mouhamadou
    Yu, Xueying
    NONLINEARITY, 2022, 35 (04) : 2020 - 2072