Implementation of chemical reaction equilibrium by Gibbs and Helmholtz energies in tubular reactor models: Application to the steam-methane reforming process
Thermodynamics;
Helmholtz energy;
Gibbs energy;
Chemical reaction equilibrium;
Steam-methane reforming;
Fixed packed bed reactor;
COMPUTATIONAL FLUID-DYNAMICS;
BED MEMBRANE REACTORS;
HYDROGEN-PRODUCTION;
SYNTHESIS GAS;
PARAMETERS;
DESIGN;
FUEL;
MASS;
D O I:
10.1016/j.ces.2015.10.011
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
In the tubular reactor models the mass and heat source terms due to chemical reactions in the species mass balances and temperature equation are conventionally determined from kinetic rate expressions. In many cases a kinetic rate model is not available but the chemical equilibrium conversion can be determined from reaction equilibrium calculations minimizing the Gibbs or Helmholtz free energies. Although a process is believed to behave physically like a tubular reactor, previous feasibility and design studies have typically disregarded fluid flow and mass- and heat transfer limitations and performed a classical chemical equilibrium calculation. For non-adiabatic cases, valuable information on the heat transfer flux limitations of the chemical process at the wall (often provided by a specified axial heating/cooling media temperature profile) is lost when simplifying a model representing the physical tubular reactor process behavior by considering a classical thermodynamic system having uniform state properties. For this reason, in the present study, a new type of tubular reactor model, which we name the differential Gibbs (or Helmholtz) reactor model, is presented to improve on the conventional feasibility and design model. In the differential Gibbs (or Helmholtz) reactor model, the chemical conversion and the reaction heat are determined assuming chemical reaction equilibrium conditions along the axial flow direction by minimizing the Gibbs (or Helmholtz) free energy. The new model is verified through comparison with the conventional differential tubular model using the fast reaction kinetics of the steam-methane reforming process and neglected mass diffusion limitation of the catalyst. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
China Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R China
Wang, Fuqiang
Shuai, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaChina Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R China
Shuai, Yong
Wang, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Natl Engn Lab Coalfired Pollutants Emiss Reduct, Jinan 250061, Peoples R ChinaChina Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R China
Wang, Zhiqiang
Leng, Yu
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R China
Leng, Yu
Tan, Heping
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R ChinaChina Univ Petr Huadong, Collage Pipeline & Civil Engn, Qingdao 266580, Peoples R China
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Zhang, Hao
Shuai, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Shuai, Yong
Yuan, Ye
论文数: 0引用数: 0
h-index: 0
机构:
FAW Jiefang Automot CO LTD, F Div, 2259 Dongfeng St, Changchun 130011, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Yuan, Ye
Lougou, Bachirou Guene
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Lougou, Bachirou Guene
Jiang, Boshu
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Jiang, Boshu
Wang, Fuqiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Weihai, Sch Automobile Engn, 2 West Wenhua Rd, Weihai 264209, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
Wang, Fuqiang
Cheng, Ziming
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Weihai, Sch Automobile Engn, 2 West Wenhua Rd, Weihai 264209, Peoples R ChinaHarbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China