Anatomically Informed Bayesian Model Selection for fMRI Group Data Analysis

被引:0
|
作者
Keller, Merlin [1 ,2 ,3 ]
Lavielle, Marc [2 ,5 ]
Perrot, Matthieu [1 ,4 ]
Roche, Alexis [1 ]
机构
[1] CEA, LNAO, F-91191 Gif Sur Yvette, France
[2] Univ Paris Sud, Dept Probabil & Stat, Paris, France
[3] INRIA Saclay, PARIETAL team, Palaiseau, France
[4] INSERM, Orsay, France
[5] Univ Paris 05, Paris, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS | 2009年 / 5762卷
关键词
NORMALIZATION; INFERENCE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new approach for fMRI group data analysis is introduced to overcome the limitations of standard voxel-based testing methods, such as Statistical Parametric Mapping (SPM). Using a Bayesian model selection framework, the functional network associated with a certain cognitive task is selected according to the posterior probabilities of mean region activations, given a pre-defined anatomical parcellation of the brain. This approach enables us to control a Bayesian risk that balances false positives and false negatives, unlike the SPM-like approach, which only controls false positives. On data. from a mental calculation experiment it detected the functional network known to be involved in number processing, whereas the SPM-like approach either swelled or missed the different activation regions.
引用
收藏
页码:448 / +
页数:2
相关论文
共 50 条
  • [1] ANATOMICALLY INFORMED BAYESIAN SPATIAL PRIORS FOR FMRI ANALYSIS
    Abramian, David
    Siden, Per
    Knutsson, Hans
    Villani, Mattias
    Eklund, Anders
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1026 - 1030
  • [2] Physiologically informed bayesian analysis of ASL fMRI data
    Pascual, Aina Frau
    Vincent, Thomas
    Sloboda, Jennifer
    Ciuciu, Philippe
    Forbes, Florence
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8677 : 37 - 48
  • [3] Anatomically informed interpolation of fMRI data on the cortical surface
    Grova, C.
    Makni, S.
    Flandin, G.
    Ciuciu, P.
    Gotman, J.
    Poline, J. B.
    NEUROIMAGE, 2006, 31 (04) : 1475 - 1486
  • [4] A Bayesian multilevel model for fMRI data analysis
    Ferreira da Silva, Adelino R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 102 (03) : 238 - 252
  • [5] Anatomically informed convolution kernels for the projection of fMRI data on the cortical surface
    Operto, Gregory
    Bulot, Remy
    Anton, Jean-Luc
    Coulon, Olivier
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 300 - 307
  • [6] Spatial Bayesian hierarchical model with variable selection to fMRI data
    Lee, Kuo-Jung
    Hsieh, Shulan
    Wen, Tanya
    SPATIAL STATISTICS, 2017, 21 : 96 - 113
  • [7] A framework for group analysis of fMRI data using dynamic Bayesian networks
    Li, Junning
    Wang, Z. Jane
    McKeown, Martin J.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5992 - +
  • [8] Bayesian Estimation of Probabilistic Atlas for Anatomically-Informed Functional MRI Group Analyses
    Xu, Hao
    Thirion, Bertrand
    Allassonniere, Stephanie
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT III, 2013, 8151 : 592 - 599
  • [9] Bayesian spatiotemporal model of fMRI data
    Quiros, Alicia
    Montes Diez, Raquel
    Gamerman, Dani
    NEUROIMAGE, 2010, 49 (01) : 442 - 456
  • [10] ANATOMICALLY ADAPTED WAVELETS FOR INTEGRATED STATISTICAL ANALYSIS OF FMRI DATA
    Oezkaya, S. Goerkem
    Van De Ville, Dimitri
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 469 - 472