Optical Fiber Channel Modeling Method Using Multi-BiLSTM for PM-QPSK Systems

被引:1
作者
Cui, Qichuan [1 ]
Wang, Danshi [1 ]
Li, Mingliang [1 ]
Song, Yuchen [1 ]
Li, Jin [1 ]
Zhang, Min [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR) | 2020年
基金
中国国家自然科学基金;
关键词
D O I
10.1364/CLEOPR.2020.C4F_5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A deep learning-based modeling technique is proposed for dual-polarization optical fiber channel in PM-QPSK system. All the values of R-square and similarity are >0.98 and >0,99.
引用
收藏
页数:3
相关论文
共 5 条
[1]  
Agrawal GP., 2012, FIBER OPTIC COMMUNIC
[2]   DEEP LEARNING IN PHYSICAL LAYER COMMUNICATIONS [J].
Qin, Zhijin ;
Ye, Hao ;
Li, Geoffrey Ye ;
Juang, Biing-Hwang Fred .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (02) :93-99
[3]   SPLIT-STEP FOURIER MIGRATION [J].
STOFFA, PL ;
FOKKEMA, JT ;
FREIRE, RMD ;
KESSINGER, WP .
GEOPHYSICS, 1990, 55 (04) :410-421
[4]   Intelligent constellation diagram analyzer using convolutional neural network-based deep learning [J].
Wang, Danshi ;
Zhang, Min ;
Li, Jin ;
Li, Ze ;
Li, Jianqiang ;
Song, Chuang ;
Chen, Xue .
OPTICS EXPRESS, 2017, 25 (15) :17150-17166
[5]   Deep Learning for Wireless Physical Layer: Opportunities and Challenges [J].
Wang, Tianqi ;
Wen, Chao-Kai ;
Wang, Hanqing ;
Gao, Feifei ;
Jiang, Tao ;
Jin, Shi .
CHINA COMMUNICATIONS, 2017, 14 (11) :92-111