Positivity and convergence in fermionic quantum field theory

被引:20
作者
Salmhofer, M [1 ]
Wieczerkowski, C
机构
[1] ETH Zentrum, CH-8092 Zurich, Switzerland
[2] Univ Munster, Inst Theoret Phys 1, D-48149 Munster, Germany
关键词
fermions; perturbation expansions; Gram estimates; renormalization group;
D O I
10.1023/A:1018661110470
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive norm bounds that imply the convergence of perturbation theory in fermionic quantum field theory if the propagator is summable and has a finite Gram constant. These bounds are sufficient for an application in renormalization group studies. Our proof is conceptually simple and technically elementary; it clarifies how the applicability of Gram bounds with uniform constants is related to positivity properties of matrices associated to the procedure of taking connected parts of Gaussian convolutions. This positivity is preserved in the decouplings that also preserve stability in the case of two-body interactions.
引用
收藏
页码:557 / 586
页数:30
相关论文
共 18 条
[1]  
ABDESSELAM A, 1995, CONSTRUCTIVE PHYSICS
[2]  
ABDESSELAM A, 1997, EXPLICIT FERMIONIC T
[3]   A PHASE CELL CLUSTER-EXPANSION FOR EUCLIDEAN FIELD-THEORIES [J].
BATTLE, GA ;
FEDERBUSH, P .
ANNALS OF PHYSICS, 1982, 142 (01) :95-139
[4]   MAYER EXPANSIONS AND THE HAMILTON-JACOBI EQUATION .2. FERMIONS, DIMENSIONAL REDUCTION FORMULAS [J].
BRYDGES, DC ;
WRIGHT, JD .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (3-4) :435-456
[5]  
BRYDGES DC, 1999, IN PRESS COMMUNICATI
[6]  
BRYDGES DC, 1984, HOUCHES SESSION, V43
[7]   Continuous constructive fermionic renormalization [J].
Disertori, M ;
Rivasseau, V .
ANNALES HENRI POINCARE, 2000, 1 (01) :1-57
[8]   A representation for fermionic correlation functions [J].
Feldman, J ;
Knorrer, H ;
Trubowitz, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (02) :465-493
[9]   MASSIVE GROSS-NEVEU MODEL - A RIGOROUS PERTURBATIVE CONSTRUCTION [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
SENEOR, R .
PHYSICAL REVIEW LETTERS, 1985, 54 (14) :1479-1481
[10]  
GAWEDZKI K, 1985, COMMUN MATH PHYS, V102, P1, DOI 10.1007/BF01208817