The ins and outs of microorganism-electrode electron transfer reactions

被引:411
作者
Kumar, Amit [1 ]
Hsu, Leo Huan-Hsuan [2 ]
Kavanagh, Paul [3 ]
Barriere, Frederic [4 ]
Lens, Piet N. L. [5 ,6 ,7 ]
Lapinsonniere, Laure [4 ]
Lienhard, John H. [1 ]
Schroeder, Uwe [8 ]
Jiang, Xiaocheng [2 ]
Leech, Donal [6 ,7 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[3] Queens Univ Belfast, Sch Chem & Chem Engn, David Keir Bldg,Stranmillis Rd, Belfast BT9 5AG, Antrim, North Ireland
[4] Univ Rennes 1, Inst Sci Chim Rennes, CNRS, UMR 6226, Campus Beaulieu, F-35042 Rennes, France
[5] UNESCO IHE, Inst Water Educ, POB 3015, NL-2601 DA Delft, Netherlands
[6] Natl Univ Ireland, Biomol Elect Res Lab, Sch Chem, Univ Rd, Galway H91 TK33, Ireland
[7] Natl Univ Ireland, Ryan Inst, Univ Rd, Galway H91 TK33, Ireland
[8] Tech Univ Carolo Wilhelmina Braunschweig, Inst Environm & Sustainable Chem, Hagenring 30, D-38106 Braunschweig, Germany
关键词
MICROBIAL FUEL-CELLS; GEOBACTER-SULFURREDUCENS BIOFILMS; SHEWANELLA-ONEIDENSIS; MEASURING CONDUCTIVITY; TRANSFER MECHANISMS; CHARGE-TRANSPORT; RECENT PROGRESS; CYTOCHROME-C; REDUCTION; NANOWIRES;
D O I
10.1038/s41570-017-0024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron transfer between microorganisms and an electrode - even across long distances - enables the former to live by coupling to an electronic circuit. Such a system integrates biological metabolism with artificial electronics; studying these systems adds to our knowledge of charge transport in the chemical species involved, as well as, perhaps most importantly, to our knowledge of charge transport and chemistry at the cell-electrode interfaces. This understanding may lead to microbial electrochemical systems finding widespread application, particularly in the energy sector. Bioelectrochemical systems have already shown promise for electricity generation, as well as for the production of biochemical and chemical feedstocks, and with improvement are likely to give rise to viable applications.
引用
收藏
页数:13
相关论文
共 144 条
[1]   An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond [J].
Bajracharya, Suman ;
Sharma, Mohita ;
Mohanakrishna, Gunda ;
Benneton, Xochitl Dominguez ;
Strik, David P. B. T. B. ;
Sarma, Priyangshu M. ;
Pant, Deepak .
RENEWABLE ENERGY, 2016, 98 :153-170
[2]   On Electron Transport through Geobacter Biofilms [J].
Bond, Daniel R. ;
Strycharz-Glaven, Sarah M. ;
Tender, Leonard M. ;
Torres, Cesar I. .
CHEMSUSCHEM, 2012, 5 (06) :1099-1105
[3]   Electron uptake by iron-oxidizing phototrophic bacteria [J].
Bose, A. ;
Gardel, E. J. ;
Vidoudez, C. ;
Parra, E. A. ;
Girguis, P. R. .
NATURE COMMUNICATIONS, 2014, 5 :3391
[4]   Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities [J].
Breuer, Marian ;
Rosso, Kevin M. ;
Blumberger, Jochen ;
Butt, Julea N. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (102)
[5]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[6]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958
[7]   Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum [J].
Choi, Okkyoung ;
Kim, Taeyeon ;
Woo, Han Min ;
Um, Youngsoon .
SCIENTIFIC REPORTS, 2014, 4
[8]   Microscale microbial fuel cells: Advances and challenges [J].
Choi, Seokheun .
BIOSENSORS & BIOELECTRONICS, 2015, 69 :8-25
[9]   Harnessing the power of microbial autotrophy [J].
Claassens, Nico J. ;
Sousa, Diana Z. ;
dos Santos, Vitor A. P. Martins ;
de Vos, Willem M. ;
van der Oost, John .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (11) :692-706
[10]  
Cohen B., 1931, J BACTERIOL, V21, P18