A new M x N-grid double-scroll chaotic attractors from Rucklidge chaotic system

被引:12
作者
Chen, Zhong [1 ,2 ,3 ]
Wen, Guilin [1 ,3 ]
Zhou, Huaan [1 ,3 ]
Chen, Junyao [4 ,5 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China
[3] Hunan Univ, Key Lab Adv Design & Simulat Tech Special Equipme, Minist Educ, Changsha 410082, Hunan, Peoples R China
[4] Hengyang Normal Univ, Dept Phys & Elect Informat Sci, Hengyang 421002, Peoples R China
[5] Ajou Univ, Coll Informat Technol, Suwon 16499, South Korea
来源
OPTIK | 2017年 / 136卷
基金
中国国家自然科学基金;
关键词
Rucklidge system; Multi-scroll attractor; Arctangent function series; CIRCUIT IMPLEMENTATION; GENERATION;
D O I
10.1016/j.ijleo.2017.01.088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new method for generating M x N-grid double-scroll Rucklidge chaotic attractors is presented. By designing arctangent function series to construct a nonlinear function, which replace the state variables x, y of the Rucklidge system, a new M x N-grid double-scroll chaotic system is created. The formation mechanism of this M x N-grid double-scroll chaotic model is further investigated. Moreover, some basic properties are theoretically analyzed and numerically simulated, including equilibria and their stability, Lyapunov exponents and bifurcation diagram. This system can be widely utilized in secure communication and data encryption. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 34 条
[1]   Multi-scroll and multi-wing chaotic attractor generated with Julia process fractal [J].
Bouallegue, Kais ;
Chaari, Abdessattar ;
Toumi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2011, 44 (1-3) :79-85
[2]  
Cafagna Donato, 2011, INT J BIFURCAT CHAOS, V13, P2889
[3]  
Chen L., 2016, J NONLINEAR SCI, V26, P1369
[4]   Generation and circuit implementation of fractional-order multi-scroll attractors [J].
Chen, Liping ;
Pan, Wei ;
Wu, Ranchao ;
Wang, Kunpeng ;
He, Yigang .
CHAOS SOLITONS & FRACTALS, 2016, 85 :22-31
[5]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[6]   Generating 3-D scroll grid attractors of fractional differential systems via stair function [J].
Deng, Weihua .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :3965-3983
[7]   Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control [J].
Deng, Weihua ;
Lu, Jinhu .
CHAOS, 2006, 16 (04)
[8]   Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system [J].
Deng, Weihua ;
Lu, Jinhu .
PHYSICS LETTERS A, 2007, 369 (5-6) :438-443
[9]   Novel Grid Multiwing Butterfly Chaotic Attractors and Their Circuit Design [J].
Huang, Yun ;
Zhang, Peng ;
Zhao, Weifeng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (05) :496-500
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO