Noncommutative correction to the entropy of Schwarzschild black hole with GUP

被引:22
作者
Anacleto, M. A. [1 ]
Brito, F. A. [1 ,2 ]
Cruz, S. S. [1 ]
Passos, E. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Fis, Caixa Postal 10071, BR-58429900 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2021年 / 36卷 / 03期
关键词
Noncommutative Schwarzschild black hole; black hole thermodynamics; generalized uncertainty principle; QUANTUM-GRAVITY; PARTICLES; GEOMETRY;
D O I
10.1142/S0217751X21500287
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper we study through tunneling formalism, the effect of noncommutativity to Hawking radiation and the entropy of the noncommutative Schwarzschild black hole. In our model we have considered the noncommutativity implemented via the Lorentzian distribution. We obtain noncommutative corrections to the Hawking temperature using the Hamilton-Jacobi method and the Wentzel-Kramers-Brillouin (WKB) approximation. In addition, we found corrections of the logarithmic and other types due to noncommutativity and quantum corrections from the generalized uncertainty principle (GUP) for the entropy of the Schwarzschild black hole.
引用
收藏
页数:11
相关论文
共 67 条
[1]   The generalized uncertainty principle and black hole remnants [J].
Adler, RJ ;
Chen, PS ;
Santiago, DI .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) :2101-2108
[2]   Discreteness of space from the generalized uncertainty principle [J].
Ali, Ahmed Farag ;
Das, Saurya ;
Vagenas, Elias C. .
PHYSICS LETTERS B, 2009, 678 (05) :497-499
[3]   Testable scenario for relativity with minimum length [J].
Amelino-Camelia, G .
PHYSICS LETTERS B, 2001, 510 (1-4) :255-263
[4]   Noncommutative Correction to the Entropy of BTZ Black Hole with GUP [J].
Anacleto, M. A. ;
Brito, F. A. ;
Carvalho, B. R. ;
Passos, E. .
ADVANCES IN HIGH ENERGY PHYSICS, 2021, 2021
[5]   Absorption and scattering of a noncommutative black hole [J].
Anacleto, M. A. ;
Brito, F. A. ;
Campos, J. A., V ;
Passos, E. .
PHYSICS LETTERS B, 2020, 803
[6]   Quantum-corrected rotating acoustic black holes in Lorentz-violating background [J].
Anacleto, M. A. ;
Brito, F. A. ;
Garcia, C. V. ;
Luna, G. C. ;
Passos, E. .
PHYSICAL REVIEW D, 2019, 100 (10)
[7]   Quantum correction to the entropy of noncommutative BTZ black hole [J].
Anacleto, M. A. ;
Brito, F. A. ;
Cavalcanti, A. G. ;
Passos, E. ;
Spinelly, J. .
GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (02)
[8]   Quantum-Corrected Two-Dimensional Horava-Lifshitz Black Hole Entropy [J].
Anacleto, M. A. ;
Bazeia, D. ;
Brito, F. A. ;
Mota-Silva, J. C. .
ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
[9]   Quantum-corrected self-dual black hole entropy in tunneling formalism with GUP [J].
Anacleto, M. A. ;
Brito, F. A. ;
Passos, E. .
PHYSICS LETTERS B, 2015, 749 :181-186
[10]   Quantum-corrected finite entropy of noncommutative acoustic black holes [J].
Anacleto, M. A. ;
Brito, F. A. ;
Luna, G. C. ;
Passos, E. ;
Spinelly, J. .
ANNALS OF PHYSICS, 2015, 362 :436-448