Integral nonlocal approach to model interface decohesion in FFT solvers

被引:7
作者
Sharma, L. [1 ]
Peerlings, R. H. J. [1 ]
Geers, M. G. D. [1 ]
Roters, F. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Max Planck Inst Eisenforsch GmbH, Microstruct Phys & Alloy Design, Max Planck Str 1, D-40237 Dusseldorf, Germany
关键词
Nonlocal damage; Interface; Interphase; Triple junctions; CRYSTAL PLASTICITY; LATH MARTENSITE; DAMAGE; COMPOSITES; RUPTURE; GROWTH;
D O I
10.1016/j.engfracmech.2020.107516
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, the capability of Fast Fourier transform (FFT) solvers is extended to interface damage modelling. The grid based discretization necessitates to incorporate the cohesive fracture concept using the ideas of continuum damage mechanics and by approximating the sharp interfaces as interphases. The interface crack opening and sliding is modelled using anisotropic kinematics. The decohesion model and the related nonlocal regularization within the interphases, including triple junctions, are discussed in the context of regular grid discretization. An integral nonlocal approach is used to obtain delocalized deformation and it also enables the intended scaling of cohesive parameters. The response of the model-in terms of overall response and the insensitivity of dissipation to interphase thickness-is discussed in a one-dimensional study. Crack propagation modelling along straight and non-straight interface paths in two dimensional polycrystals is also presented.
引用
收藏
页数:16
相关论文
共 43 条
  • [1] Archie Fady, 2017, Materials Science Forum, V879, P157, DOI 10.4028/www.scientific.net/MSF.879.157
  • [2] Micromorphic approach to single crystal plasticity and damage
    Aslan, O.
    Cordero, N. M.
    Gaubert, A.
    Forest, S.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (12) : 1311 - 1325
  • [3] Micromechanics of coalescence in ductile fracture
    Benzerga, AA
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (06) : 1331 - 1362
  • [4] Dalcin L., 2016, Technical Report
  • [5] Finite strain FFT-based non-linear solvers made simple
    de Geus, T. W. J.
    Vondrejc, J.
    Zeman, J.
    Peerlings, R. H. J.
    Geers, M. G. D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 412 - 430
  • [6] Plasticity of lath martensite by sliding of substructure boundaries
    Du, C.
    Hoefnagels, J. P. M.
    Vaes, R.
    Geers, M. G. D.
    [J]. SCRIPTA MATERIALIA, 2016, 120 : 37 - 40
  • [7] YIELDING OF STEEL SHEETS CONTAINING SLITS
    DUGDALE, DS
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1960, 8 (02) : 100 - 104
  • [8] A spectral method solution to crystal elasto-viscoplasticity at finite strains
    Eisenlohr, P.
    Diehl, M.
    Lebensohn, R. A.
    Roters, F.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 46 : 37 - 53
  • [9] Forest S., 2004, Local Approach to Fracture
  • [10] Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework
    Geers, MGD
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (30-32) : 3377 - 3401