Liangxue Jiedu Formula Improves Psoriasis and Dyslipidemia Comorbidity via PI3K/Akt/mTOR Pathway

被引:16
|
作者
Xie, Xinran [1 ,2 ]
Zhang, Lei [1 ,2 ]
Li, Xue [3 ]
Liu, Weihong [1 ,2 ]
Wang, Ping [1 ]
Lin, Yan [1 ,2 ]
Han, Xuyang [1 ,2 ]
Li, Ping [1 ,2 ]
机构
[1] Capital Med Univ, Beijing Hosp Tradit Chinese Med, Beijing, Peoples R China
[2] Beijing Inst Tradit Chinese Med, Beijing, Peoples R China
[3] Beijing Univ Chinese Med, Dongfang Hosp, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
psoriasis; dyslipidemia; PI3K/Akt/mTOR pathway; ApoE-/-; mice; imiquimod (IMQ); traditional Chinese medicine; IMIQUIMOD-INDUCED PSORIASIS; CARDIOVASCULAR RISK; PLAQUE PSORIASIS; MTOR; INFLAMMATION; INHIBITION; DISEASE; CELLS; MICE;
D O I
10.3389/fphar.2021.591608
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The pathological mechanism of psoriasis and dyslipidemia comorbidity is unclear, and there are few reports on therapy. By establishing an animal model of ApoE(-/-) mice induced by imiquimod (IMQ), we explored the effects of Liangxue Jiedu formula (LXJDF), a traditional Chinese herb medicine, on psoriasis and dyslipidemia comorbidity through PI3K/Akt/mTOR pathway. The experiment was divided into a control group, a model group, an LXJDF high-dose group, an LXJDF low-dose group, and a positive drug (atorvastatin) group. Each group of mice was given continuous oral administration once a day. After 3 weeks, the mice dorsal skins were smeared with 62.5 mg of 5% IMQ cream for five consecutive days and continued to be given the corresponding drugs. We observed the effects of LXJDF on skin lesion changes, PASI score, pathological characteristics, blood lipid levels (TC, TG, LDL, HDL, and oxLDL), liver pathology, inflammatory factors in the skin, and the protein expression of PI3K/Akt/mTOR pathway in both the skin and liver. The results showed that LXJDF could significantly improve the psoriasiform skin lesions of IMQ-induced ApoE(-/-) mice, including the reduction of PASI, thinning of epidermal thickness, inhibition of hyperkeratosis and parakeratosis, and inflammatory infiltration in the dermis, and reduce lipid accumulation in the epidermal. LXJDF could regulate blood lipid levels, reduce liver inflammation, and protect the liver. LXJDF could significantly decrease the gene expressions of inflammatory factors IL-17A, IL-23, IL-6, and TNF-alpha in the skin. LXJDF showed specific inhibition of PI3K, Akt, mTOR protein, and its phosphorylation expressions. In conclusion, LXJDF exerts an intervention effect on psoriasis and dyslipidemia comorbidity via PI3K/Akt/mTOR and its phosphorylation pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Targeting the PI3K/AKT/mTOR pathway in ovarian cancer
    Musa, Fernanda
    Schneider, Robert
    TRANSLATIONAL CANCER RESEARCH, 2015, 4 (01) : 97 - 106
  • [32] PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway
    Bi, Yong-Yan
    Quan, Yong
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 1093 - 1098
  • [33] Astragalus Membranaceus Induced Myotube Hypertrophy via the PI3K/Akt/mTOR Pathway
    Yeh, Tzu-Shao
    Liu, Jen-Fang
    Hsu, Mei-Chich
    Yang, Suh-Chin
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (05): : 736 - 736
  • [34] IMMT promotes hepatocellular carcinoma formation via PI3K/AKT/mTOR pathway
    Wang, Jiabei
    Zhang, Yunguang
    Sun, Linmao
    Liu, Yao
    ONCOLOGIE, 2023, 25 (06) : 691 - 703
  • [35] Sivelestat improves acute lung injury by inhibiting PI3K/AKT/mTOR signaling pathway
    Zhou, Yaqing
    Wang, Haiyan
    Liu, Aiming
    Pu, Zunguo
    Ji, Qiuxia
    Xu, Jianhua
    Xu, Yuehua
    Wang, Ying
    PLOS ONE, 2024, 19 (06):
  • [36] Liangxue Guyuan decoction alleviates radiation enteritis through PI3K/AKT pathway in rats
    Wang, Y. G.
    Xu, H. C.
    Feng, J.
    Xu, C. Y.
    Dou, Y. Q.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2021, 19 (04): : 779 - 789
  • [37] Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer
    Li, Huayi
    Prever, Lorenzo
    Hirsch, Emilio
    Gulluni, Federico
    CANCERS, 2021, 13 (14)
  • [38] PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma
    Li, Xiaoman
    Wu, Changjing
    Chen, Nianci
    Gu, Huadi
    Yen, Allen
    Cao, Liu
    Wang, Enhua
    Wang, Liang
    ONCOTARGET, 2016, 7 (22) : 33440 - 33450
  • [39] Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma
    Shao, Weilin
    Feng, Yan
    Huang, Jin
    Li, Tingyu
    Gao, Shengguai
    Yang, Yihao
    Li, Dongqi
    Yang, Zuozhang
    Yao, Zhihong
    OPEN LIFE SCIENCES, 2024, 19 (01):
  • [40] The PI3K/AKT/mTOR Pathway as a Therapeutic Target in Endometrial Cancer
    Slomovitz, Brian M.
    Coleman, Robert L.
    CLINICAL CANCER RESEARCH, 2012, 18 (21) : 5856 - 5864