Multicomponent Subspace Codes in Network Coding

被引:0
作者
Gabidulin, E. M. [1 ]
Pilipchuk, N., I [1 ]
机构
[1] Moscow Inst Phys & Technol, Dept Radio Engn & Control Syst, Moscow, Russia
来源
FIFTH INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (ENT-MIPT 2018) | 2018年
关键词
ERROR-CORRECTION; SPACES; BOUNDS;
D O I
10.1109/EnT-MIPT.2018.00016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to multicomponent subspace codes with zero prefix (MZP) and their role in network coding. In fact, it is a collection of our results about multicomponent codes for last years. The MZP construction is described. The cardinality for different parameters is calculated. The efficiency as a ratio cardinality to the upper bound is estimated. It is shown that MZP additional components can increase cardinality up to 30 percents. The iterative decoding algorithm is presented. At the first stage of decoding it is necessary to obtain a MZP component and then, at the next stage to apply the decoding algorithm of Silva-Koetter-Kschischang (SKK) codes.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 34 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]   PARTIAL SPREADS IN FINITE PROJECTIVE SPACES AND PARTIAL DESIGNS [J].
BEUTELSPACHER, A .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :211-229
[3]  
Braun M., 2013, ARXIV13041462MATHCO
[4]  
Cai N, 2006, COMMUN INF SYST, V6, P37
[5]  
Cruz J., 2013, 7 INT WORKSH OPT COD, P77
[6]  
Drake D, 1979, J GEOM, V13, P210, DOI 10.1007/BF01919756
[7]   The maximum size of a partial 3-spread in a finite vector space over G F(2) [J].
El-Zanati, S. ;
Jordon, H. ;
Seelinger, G. ;
Sissokho, P. ;
Spence, L. .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) :101-107
[8]  
Gabidulin E., 2017, PETERBURG
[9]  
Gabidulin E., 2009, P MIPT, V1, P3
[10]   Multicomponent codes with maximum code distance [J].
Gabidulin, E. M. ;
Pilipchuk, N. I. .
PROBLEMS OF INFORMATION TRANSMISSION, 2016, 52 (03) :276-283