Quantum jump Monte Carlo approach simplified: Abelian symmetries

被引:5
作者
Macieszczak, Katarzyna [1 ]
Rose, Dominic C. [2 ,3 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Univ Pk, Nottingham NG7 2RD, England
关键词
EQUATIONS; THEOREM;
D O I
10.1103/PhysRevA.103.042204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider Markovian dynamics of a finitely dimensional open quantum system featuring a weak unitary symmetry, i.e., when the action of a unitary symmetry on the space of density matrices commutes with the master operator governing the dynamics. We show how to encode the weak symmetry in quantum stochastic dynamics of the system by constructing a weakly symmetric representation of the master operator: a symmetric Hamiltonian, and jump operators connecting only the symmetry eigenspaces with a fixed eigenvalue ratio. In turn, this representation simplifies both the construction of the master operator as well as quantum jump Monte Carlo simulations, where, for a symmetric initial state, stochastic trajectories of the system state are supported within a single symmetry eigenspace at a time, which is changed only by the action of an asymmetric jump operator. Our results generalize directly to the case of multiple Abelian weak symmetries.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Symmetries and conserved quantities in Lindblad master equations [J].
Albert, Victor V. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2014, 89 (02)
[2]   Distinguishing decoherence from alternative quantum theories by dynamical decoupling [J].
Arenz, Christian ;
Hillier, Robin ;
Fraas, Martin ;
Burgarth, Daniel .
PHYSICAL REVIEW A, 2015, 92 (02)
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Adiabatic Response for Lindblad Dynamics [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (05) :800-823
[5]   Analysis of quantum semigroups with GKS-Lindblad generators: II. General [J].
Baumgartner, Bernhard ;
Narnhofer, Heide .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (39)
[6]   Invariant measure for quantum trajectories [J].
Benoist, T. ;
Fraas, M. ;
Pautrat, Y. ;
Pellegrini, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (1-2) :307-334
[7]   A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains [J].
Buca, Berislav ;
Prosen, Tomaz .
NEW JOURNAL OF PHYSICS, 2012, 14
[8]   Generalized Adiabatic Theorem and Strong-Coupling Limits [J].
Burgarth, Daniel ;
Facchi, Paolo ;
Nakazato, Hiromichi ;
Pascazio, Saverio ;
Yuasa, Kazuya .
QUANTUM, 2019, 3
[9]   Symmetry and block structure of the Liouvillian superoperator in partial secular approximation [J].
Cattaneo, Marco ;
Luca Giorgi, Gian ;
Maniscalco, Sabrina ;
Zambrini, Roberta .
PHYSICAL REVIEW A, 2020, 101 (04)
[10]   Atomic Three-Body Loss as a Dynamical Three-Body Interaction [J].
Daley, A. J. ;
Taylor, J. M. ;
Diehl, S. ;
Baranov, M. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)