GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: The critical role of nitrogen vacancies at the GaN surface

被引:26
作者
Chen, Yao [1 ]
Haller, Camille [1 ]
Liu, Wei [1 ]
Karpov, Sergey Yu [2 ]
Carlin, Jean-Francois [1 ]
Grandjean, Nicolas [1 ]
机构
[1] Ecole Polytech F ed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Soft Impact Ltd, STR Grp, 64 Bolshoi Sampsonievskii Ave,Bld E, St Petersburg 194044, Russia
基金
瑞士国家科学基金会;
关键词
Quantum efficiency - Growth temperature - Semiconductor quantum wells - Gallium nitride - Nitrogen - III-V semiconductors;
D O I
10.1063/5.0040326
中图分类号
O59 [应用物理学];
学科分类号
摘要
An indium-containing layer positioned underneath the InGaN/GaN quantum well (QW) active region is commonly used in high efficiency blue light-emitting diodes. Recent studies proposed that the role of this underlayer is to trap surface defects (SDs), which, otherwise, generate non-radiative recombination centers in the QWs. However, the origin and the nature of these defects remain unknown. Our previous study revealed that high-temperature growth of GaN promotes SD creation. In this work, we investigate the impact of the GaN-buffer growth temperature on the InGaN/GaN QW efficiency. We show that the 300K photoluminescence decay time of a single QW deposited on 1- mu m-thick GaN buffer dramatically decreases from few ns to less than 100 ps when the GaN buffer growth temperature is increased from 870 degrees C to 1045 degrees C. This internal quantum efficiency collapse is ascribed to the generation of SDs in the GaN buffer. A theoretical study of temperature-dependent defect formation energy in GaN suggests that these SDs are most likely nitrogen vacancies. Finally, we investigate the formation dynamics of SDs and show that they are mainly generated at the early stage of the GaN growth, i.e., within 50nm, and then reach a steady state concentration mainly fixed by the GaN growth temperature.
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Abakumov V.N., 1991, Nonradiative Recombination in Semiconductors. Modern Problems in Condensed Matter Sciences, V33
[2]   High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers [J].
Akasaka, T ;
Gotoh, H ;
Saito, T ;
Makimoto, T .
APPLIED PHYSICS LETTERS, 2004, 85 (15) :3089-3091
[3]   Quantitative and depth-resolved deep level defect distributions in InGaN/GaN light emitting diodes [J].
Armstrong, A. ;
Henry, T. A. ;
Koleske, D. D. ;
Crawford, M. H. ;
Lee, S. R. .
OPTICS EXPRESS, 2012, 20 (23) :A812-A821
[4]   Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers [J].
Armstrong, Andrew M. ;
Bryant, Benjamin N. ;
Crawford, Mary H. ;
Koleske, Daniel D. ;
Lee, Stephen R. ;
Wierer, Jonathan J., Jr. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (13)
[5]   Analysis of vaporization kinetics of group-III nitrides [J].
Averyanova, MV ;
Przhevalskii, IN ;
Karpov, SY ;
Makarov, YN ;
Ramm, MS ;
Talalaev, RA .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 43 (1-3) :167-171
[6]  
Averyanova MV, 1996, MRS INTERNET J N S R, V1, pU254
[7]   Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors [J].
Chichibu, Shigefusa F. ;
Uedono, Akira ;
Onuma, Takeyoshi ;
Haskell, Benjamin A. ;
Chakraborty, Arpan ;
Koyama, Takahiro ;
Fini, Paul T. ;
Keller, Stacia ;
Denbaars, Steven P. ;
Speck, James S. ;
Mishra, Umesh K. ;
Nakamura, Shuji ;
Yamaguchi, Shigeo ;
Kamiyama, Satoshi ;
Amano, Hiroshi ;
Akasaki, Isamu ;
Han, Jung ;
Sota, Takayuki .
NATURE MATERIALS, 2006, 5 (10) :810-816
[8]   Quantum Efficiency of III-Nitride Emitters: Evidence for Defect-Assisted Nonradiative Recombination and its Effect on the Green Gap [J].
David, Aurelien ;
Young, Nathan G. ;
Hurni, Christophe A. ;
Craven, Michael D. .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[9]   VACANCIES NEAR SEMICONDUCTOR SURFACES [J].
DAW, MS ;
SMITH, DL .
PHYSICAL REVIEW B, 1979, 20 (12) :5150-5156
[10]   Native Point Defects in GaN: A Hybrid-Functional Study [J].
Diallo, I. C. ;
Demchenko, D. O. .
PHYSICAL REVIEW APPLIED, 2016, 6 (06)