Matter in loop quantum gravity without time gauge: A nonminimally coupled scalar field

被引:7
作者
Cianfrani, Francesco [1 ]
Montani, Giovanni [1 ,2 ,3 ]
机构
[1] Univ Rome, ICRA Int Ctr Relativist Astrophys, Dipartimento Fis G9, I-00185 Rome, Italy
[2] ENEA CR Frascati, Dipartimento FPN, I-00044 Frascati, Italy
[3] ICRANet CC Pescara, I-65100 Pescara, Italy
关键词
GEOMETRY; AREA;
D O I
10.1103/PhysRevD.80.084045
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the phase space of gravity nonminimally coupled to a scalar field in a generic local Lorentz frame. We reduce the set of constraints to a first class one by fixing a specific hypersurfaces in the phase space. The main issue of our analysis is to extend the features of the vacuum case to the presence of scalar matter by recovering the emergence of an SU(2) gauge structure and the nondynamical role of boost variables. Within this scheme, the supermomentum and the super-Hamiltonian are those ones associated with a scalar field minimally coupled to the metric in the Einstein frame. Hence, the kinematical Hilbert space is defined as in canonical loop quantum gravity with a scalar field, but the differences in the area spectrum are outlined to be the same as in the time-gauge approach.
引用
收藏
页数:6
相关论文
共 22 条
[1]   SO(4, C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter [J].
Alexandrov, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :4255-4268
[2]   SU(2) loop quantum gravity seen from covariant theory -: art. no. 044009 [J].
Alexandrov, S ;
Livine, ER .
PHYSICAL REVIEW D, 2003, 67 (04)
[3]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[4]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[5]   Non-minimal couplings, quantum geometry and black-hole entropy [J].
Ashtekar, A ;
Corichi, A .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (20) :4473-4484
[6]   Non-minimally coupled scalar fields and isolated horizons [J].
Ashtekar, A ;
Corichi, A ;
Sudarsky, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) :3413-3425
[7]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[8]   NONMINIMALLY COUPLED SCALAR FIELD AND ASHTEKAR VARIABLES [J].
CAPOVILLA, R .
PHYSICAL REVIEW D, 1992, 46 (04) :1450-1452
[9]  
Cianfrani F., ARXIV08052503
[10]   Towards Loop Quantum Gravity without the Time Gauge [J].
Cianfrani, Francesco ;
Montani, Giovanni .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)