Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign 2019

被引:34
作者
Makarova, Maria, V [1 ]
Alberti, Carlos [2 ]
Ionov, Dmitry, V [1 ]
Hase, Frank [2 ]
Foka, Stefani C. [1 ]
Blumenstock, Thomas [2 ]
Warneke, Thorsten [3 ,4 ]
Virolainen, Yana A. [1 ]
Kostsov, Vladimir S. [1 ]
Frey, Matthias [5 ]
Poberovskii, Anatoly, V [1 ]
Timofeyev, Yuri M. [1 ]
Paramonova, Nina N. [7 ]
Volkova, Kristina A. [1 ]
Zaitsev, Nikita A. [1 ]
Biryukov, Egor Y. [1 ]
Osipov, Sergey, I [1 ]
Makarov, Boris K. [6 ]
Polyakov, Alexander, V [1 ]
Ivakhov, Viktor M. [7 ]
Imhasin, Hamud Kh [1 ]
Mikhailov, Eugene F. [1 ]
机构
[1] St Petersburg State Univ, Dept Atmospher Phys, Fac Phys, St Petersburg, Russia
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK ASF, Karlsruhe, Germany
[3] Univ Bremen, Inst Environm Phys, Bremen, Germany
[4] Univ Bremen, Inst Remote Sensing, Bremen, Germany
[5] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
[6] Peter Great St Petersburg Polytech Univ, Inst Nucl Power Engn, St Petersburg, Russia
[7] Voeikov Main Geophys Observ, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
MAX-DOAS OBSERVATIONS; PORTABLE FTIR SPECTROMETERS; GREENHOUSE-GAS MEASUREMENTS; CARBON-DIOXIDE; METHANE EMISSIONS; NOX EMISSIONS; AIRBORNE MEASUREMENTS; CH4; EMISSIONS; AREA FLUXES; CO2;
D O I
10.5194/amt-14-1047-2021
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Global climate change is one of the most important scientific, societal and economic contemporary challenges. Fundamental understanding of the major processes driving climate change is the key problem which is to be solved not only on a global but also on a regional scale. The accuracy of regional climate modelling depends on a number of factors. One of these factors is the adequate and comprehensive information on the anthropogenic impact which is highest in industrial regions and areas with dense population - modern megacities. Megacities are not only "heat islands", but also significant sources of emissions of various substances into the atmosphere, including greenhouse and reactive gases. In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was conducted within the St. Petersburg agglomeration (Russia) aiming to estimate the emission intensity of greenhouse (CO2, CH4) and reactive (CO, NOx) gases for St. Petersburg, which is the largest northern megacity. St. Petersburg State University (Russia), Karlsruhe Institute of Technology (Germany) and the University of Bremen (Germany) jointly ran this experiment. The core instruments of the campaign were two portable Bruker EM27/SUN Fourier transform infrared (FTIR) spectrometers which were used for ground-based remote sensing measurements of the total column amount of CO2, CH4 and CO at upwind and downwind locations on opposite sides of the city. The NO2 tropospheric column amount was observed along a circular highway around the city by continuous mobile measurements of scattered solar visible radiation with an OceanOptics HR4000 spectrometer using the differential optical absorption spectroscopy (DOAS) technique. Simultaneously, air samples were collected in air bags for subsequent laboratory analysis. The air samples were taken at the locations of FTIR observations at the ground level and also at altitudes of about 100 m when air bags were lifted by a kite (in case of suitable landscape and favourable wind conditions). The entire campaign consisted of 11 mostly cloudless days of measurements in March-April 2019. Planning of measurements for each day included the determination of optimal location for FTIR spectrometers based on weather forecasts, combined with the numerical modelling of the pollution transport in the megacity area. The real-time corrections of the FTIR operation sites were performed depending on the actual evolution of the megacity NOx plume as detected by the mobile DOAS observations. The estimates of the St. Petersburg emission intensities for the considered greenhouse and reactive gases were obtained by coupling a box model and the results of the EMME observational campaign using the mass balance approach. The CO2 emission flux for St. Petersburg as an area source was estimated to be 89 +/- 28 kt km(-2) yr(-1), which is 2 times higher than the corresponding value in the EDGAR database. The experiment revealed the CH4 emission flux of 135 +/- 68 tkm(-2) yr(-1), which is about 1 order of magnitude greater than the value reported by the official inventories of St. Petersburg emissions (similar to 25 t km(-2) yr(-1) for 2017). At the same time, for the urban territory of St. Petersburg, both the EM ME experiment and the official inventories for 2017 give similar results for the CO anthropogenic flux (251 +/- 104 t km(-2) yr(-1) vs. 410 tkm(-2) yr(-1)) and for the NOx anthropogenic flux (66 +/- 28 tkm(-2) yr(-1) vs. 69 tkm(-2) yr(-1)).
引用
收藏
页码:1047 / 1073
页数:27
相关论文
共 78 条
[1]   Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: a tunnel study in the Paris megacity [J].
Ammoura, L. ;
Xueref-Remy, I. ;
Gros, V. ;
Baudic, A. ;
Bonsang, B. ;
Petit, J. -E. ;
Perrussel, O. ;
Bonnaire, N. ;
Sciare, J. ;
Chevallier, F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (23) :12871-12882
[2]  
Arya S.P., 1999, AIR POLLUTION METEOR
[3]   Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes [J].
Babenhauserheide, Arne ;
Hase, Frank ;
Morino, Isamu .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (05) :2697-2710
[4]  
BERAN DW, 1974, B AM METEOROL SOC, V55, P1097, DOI 10.1175/1520-0477(1974)055<1097:RSFAPM>2.0.CO
[5]  
2
[6]   Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations [J].
Bergamaschi, Peter ;
Karstens, Ute ;
Manning, Alistair J. ;
Saunois, Marielle ;
Tsuruta, Aki ;
Berchet, Antoine ;
Vermeulen, Alexander T. ;
Arnold, Tim ;
Janssens-Maenhout, Greet ;
Hammer, Samuel ;
Levin, Ingeborg ;
Schmidt, Martina ;
Ramonet, Michel ;
Lopez, Morgan ;
Lavric, Jost ;
Aalto, Tuula ;
Chen, Huilin ;
Feist, Dietrich G. ;
Gerbig, Christoph ;
Haszpra, Laszlo ;
Hermansen, Ove ;
Manca, Giovanni ;
Moncrieff, John ;
Meinhardt, Frank ;
Necki, Jaroslaw ;
Galkowski, Michal ;
O'Doherty, Simon ;
Paramonova, Nina ;
Scheeren, Hubertus A. ;
Steinbacher, Martin ;
Dlugokencky, Ed .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (02) :901-920
[7]   Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions [J].
Cambaliza, M. O. L. ;
Shepson, P. B. ;
Caulton, D. R. ;
Stirm, B. ;
Samarov, D. ;
Gurney, K. R. ;
Turnbull, J. ;
Davis, K. J. ;
Possolo, A. ;
Karion, A. ;
Sweeney, C. ;
Moser, B. ;
Hendricks, A. ;
Lauvaux, T. ;
Mays, K. ;
Whetstone, J. ;
Huang, J. ;
Razlivanov, I. ;
Miles, N. L. ;
Richardson, S. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (17) :9029-9050
[8]   Differential column measurements using compact solar-tracking spectrometers [J].
Chen, Jia ;
Viatte, Camille ;
Hedelius, Jacob K. ;
Jones, Taylor ;
Franklin, Jonathan E. ;
Parker, Harrison ;
Gottlieb, Elaine W. ;
Wennberg, Paul O. ;
Dubey, Manvendra K. ;
Wofsy, Steven C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) :8479-8498
[9]   Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy [J].
de Foy, B. ;
Lei, W. ;
Zavala, M. ;
Volkamer, R. ;
Samuelsson, J. ;
Mellqvist, J. ;
Galle, B. ;
Martinez, A. -P. ;
Grutter, M. ;
Retama, A. ;
Molina, L. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 :781-801
[10]   Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale -: art. no. D18306 [J].
Dlugokencky, EJ ;
Myers, RC ;
Lang, PM ;
Masarie, KA ;
Crotwell, AM ;
Thoning, KW ;
Hall, BD ;
Elkins, JW ;
Steele, LP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-8