Tailoring ionic-electronic transport in PEO-Li4C60: Towards a new class of all solid-state mixed conductors

被引:11
作者
Cattaneo, A. S. [1 ,2 ]
Dall'Asta, V. [1 ,2 ]
Pontiroli, D. [3 ]
Ricco, M. [3 ]
Magnani, G. [3 ]
Milanese, C. [1 ,2 ]
Tealdi, C. [1 ,2 ]
Quartarone, E. [1 ,2 ]
Mustarelli, P. [1 ,2 ]
机构
[1] Univ Pavia, Dept Chem, Via Taramelli 12, I-27100 Pavia, Italy
[2] INSTM, Via Taramelli 12, I-27100 Pavia, Italy
[3] Univ Parma, Dept Phys & Earth Sci, Viale Sci 7-A, I-43124 Parma, Italy
关键词
POLYMER; CONDUCTIVITY;
D O I
10.1016/j.carbon.2016.01.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixed ionic-electronic conductors (MIEC) are of growing interest for fuel cells, batteries and sensors. Here, by exploiting the unique properties of Li4C60 2D fulleride and poly(ethylene oxide) (PEO), we demonstrate the feasibility of a MIEC where the nature of transport can be tuned from ionic, to mixed, to almost entirely electronic, simply by changing the weight ratio of the two basic components. By coupling Li-7 MAS-NMR, electrochemical impedance spectroscopy and open circuit voltage (OCV) measurements of a Li/composite/LiFePO4 cell we demonstrate that: i) a fraction of Li+ ions is extracted by Li4C60 and confined into PEO amorphous strands similarly to what happens in PEO-salt systems; ii) a transition between prevalently ionic and electronic conductivity takes place at 33 wt% Li4C60. This new class of MIEC is very promising for the design of both chemically and electrochemically stable semi-cells and interfaces which can be employed in batteries and supercapacitors. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 21 条
[1]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[2]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[3]   CONDUCTIVITY AND TRANSFERENCE NUMBER MEASUREMENTS ON POLYMER ELECTROLYTES [J].
BRUCE, PG ;
EVANS, J ;
VINCENT, CA .
SOLID STATE IONICS, 1988, 28 :918-922
[4]   1D Building Blocks-Intermingled Heteronanomats as a Platform Architecture For High-Performance Ultrahigh-Capacity Lithium-Ion Battery Cathodes [J].
Kim, Ju-Myung ;
Park, Chang-Hoon ;
Wu, Qinglin ;
Lee, Sang-Young .
ADVANCED ENERGY MATERIALS, 2016, 6 (02)
[5]   Phase separation and local cation coordination in PEOnLiNTf2 polymer electrolytes:: Lessons from solid state NMR [J].
Koester, Thomas K.-J. ;
van Wuellen, Leo .
SOLID STATE IONICS, 2008, 178 (37-38) :1879-1889
[6]   THE ELECTRICAL RESISTANCE OF BINARY METALLIC MIXTURES [J].
LANDAUER, R .
JOURNAL OF APPLIED PHYSICS, 1952, 23 (07) :779-784
[7]   Li4C60:: A polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs [J].
Margadonna, S ;
Pontiroli, D ;
Belli, M ;
Shiroka, T ;
Riccò, M ;
Brunelli, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (46) :15032-15033
[8]   Microstructural 3D Reconstruction and Performance Evaluation of LSCF Cathodes Obtained by Electrostatic Spray Deposition [J].
Marinha, Daniel ;
Dessemond, Laurent ;
Cronin, J. Scott ;
Wilson, James R. ;
Barnett, Scott A. ;
Djurado, Elisabeth .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5340-5348
[9]   Modelling one- and two-dimensional solid-state NMR spectra [J].
Massiot, D ;
Fayon, F ;
Capron, M ;
King, I ;
Le Calvé, S ;
Alonso, B ;
Durand, JO ;
Bujoli, B ;
Gan, ZH ;
Hoatson, G .
MAGNETIC RESONANCE IN CHEMISTRY, 2002, 40 (01) :70-76
[10]   Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells [J].
Meligrana, G. ;
Gerbaldi, C. ;
Tuel, A. ;
Bodoardo, S. ;
Penazzi, N. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :516-522