GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR LINEAR AND NONLINEAR PARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS

被引:8
作者
Zhu, Xiaobao [1 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
基金
美国国家科学基金会;
关键词
Gradient estimate; linear parabolic equation; nonlinear parabolic equation; Liouville type theorem; KERNEL;
D O I
10.1016/S0252-9602(16)30017-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (Delta-partial derivative/partial derivative t)u(x,t) q(x, t)u(x, t) = 0 and nonlinear parabolic equations (Delta-partial derivative/partial derivative t)u(x,t) h(x, t)u(p) (x, t) = 0 (p > 1) on Riemannian manifolds. As applications, we obtain some theorems of Lionville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).
引用
收藏
页码:514 / 526
页数:13
相关论文
共 19 条
[1]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[3]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[4]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[5]   Hamilton's gradient estimate for the heat kernel on complete manifolds [J].
Kotschwar, Brett L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :3013-3019
[6]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[7]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[8]   Gradient estimate for the degenerate parabolic equation ut=ΔF(u)+H(u) on manifolds [J].
Ma, Li ;
Zhao, Lin ;
Song, Xianfa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (05) :1157-1177
[9]   Elliptic-type gradient estimate for Schrodinger equations on noncompact manifolds [J].
Ruan, Qihua .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :982-988
[10]   Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J].
Souplet, Philippe ;
Zhang, Qi S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1045-1053