Ischemic Stroke Lesion Segmentation in CT Perfusion Scans Using Pyramid Pooling and Focal Loss

被引:37
作者
Abulnaga, S. Mazdak [1 ,2 ]
Rubin, Jonathan [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Philips Res North Amer, Cambridge, MA 02141 USA
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I | 2019年 / 11383卷
关键词
D O I
10.1007/978-3-030-11723-8_36
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We present a fully convolutional neural network for segmenting ischemic stroke lesions in CT perfusion images for the ISLES 2018 challenge. Treatment of stroke is time sensitive and current standards for lesion identification require manual segmentation, a time consuming and challenging process. Automatic segmentation methods present the possibility of accurately identifying lesions and improving treatment planning. Our model is based on the PSPNet, a network architecture that makes use of pyramid pooling to provide global and local contextual information. To learn the varying shapes of the lesions, we train our network using focal loss, a loss function designed for the network to focus on learning the more difficult samples. We compare our model to networks trained using the U-Net and V-Net architectures. Our approach demonstrates effective performance in lesion segmentation and ranked among the top performers at the challenge conclusion.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2017, DUAL SCALE FULLY CON
[2]   Diagnostic Accuracy of CT Perfusion Imaging for Detecting Acute Ischemic Stroke: A Systematic Review and Meta-Analysis [J].
Biesbroek, J. M. ;
Niesten, J. M. ;
Dankbaar, J. W. ;
Biessels, G. J. ;
Velthuis, B. K. ;
Reitsma, J. B. ;
van der Schaaf, I. C. .
CEREBROVASCULAR DISEASES, 2013, 35 (06) :493-501
[3]   Cerebral Blood Flow Is the Optimal CT Perfusion Parameter for Assessing Infarct Core [J].
Campbell, Bruce C. V. ;
Christensen, Soren ;
Levi, Christopher R. ;
Desmond, Patricia M. ;
Donnan, Geoffrey A. ;
Davis, Stephen M. ;
Parsons, Mark W. .
STROKE, 2011, 42 (12) :3435-U180
[4]  
Chen LC, 2014, ARXIV
[5]   Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks [J].
Chen, Liang ;
Bentley, Paul ;
Rueckert, Daniel .
NEUROIMAGE-CLINICAL, 2017, 15 :633-643
[6]   Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke [J].
Choi, Youngwon ;
Kwon, Yongchan ;
Lee, Hanbyul ;
Kim, Beom Joon ;
Paik, Myunghee Cho ;
Won, Joong-Ho .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :231-243
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]   Automated delineation of stroke lesions using brain CT images [J].
Gillebert, Celine R. ;
Humphreys, Glyn W. ;
Mantini, Dante .
NEUROIMAGE-CLINICAL, 2014, 4 :540-548
[9]   White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks [J].
Guerrero, R. ;
Qin, C. ;
Oktay, O. ;
Bowles, C. ;
Chen, L. ;
Joules, R. ;
Wolz, R. ;
Valdes-Hernandez, M. C. ;
Dickie, D. A. ;
Wardlaw, J. ;
Rueckert, D. .
NEUROIMAGE-CLINICAL, 2018, 17 :918-934
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778