General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations

被引:43
|
作者
Li, Jianhui [1 ,2 ]
Kilic, Z. Murat [3 ]
Altintas, Yusuf [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710054, Shaanxi, Peoples R China
[2] Univ British Columbia, Dept Mech Engn, Mfg Automat Lab, Vancouver, BC V6T 1Z4, Canada
[3] Univ Manchester, Dept Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 国家重点研发计划;
关键词
five-axis machine tools; milling process; chatter stability; forced vibration; machine tool dynamics; machining processes; modeling and simulation; PREDICTION; IDENTIFICATION; STABILITY; MECHANICS; ERRORS;
D O I
10.1115/1.4047625
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Five-axis ball-end milling is used extensively to machine parts with sculptured surfaces. This paper presents the general cutting dynamics model of the ball-end milling process for machine tools with different five-axis configurations. The structural dynamics of both the tool and workpiece are considered for the prediction of chatter stability at each tool location along the tool path. The effects of tool-workpiece engagement and tool axis orientation are included in the model. By sweeping the spindle speeds, the chatter-free spindle speeds are selected followed by the prediction of forced vibrations in five-axis milling of thin-walled, flexible parts. The proposed model has been experimentally illustrated to predict the chatter stability and forced vibrations on a table-tilting five-axis computer numerical control machine tool.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Force predictive model for five-axis ball end milling of sculptured surface
    Z. C. Wei
    M. L. Guo
    M. J. Wang
    S. Q. Li
    S. X. Liu
    The International Journal of Advanced Manufacturing Technology, 2018, 98 : 1367 - 1377
  • [32] Process modeling and toolpath optimization for five-axis ball-end milling based on tool motion analysis
    Liqiang Zhang
    The International Journal of Advanced Manufacturing Technology, 2011, 57 : 905 - 916
  • [33] Multi-scale prediction of the geometrical deviations of the surface finished by five-axis ball-end milling
    Li, Bo
    Cao, Yanlong
    Ye, Xuefeng
    Guan, Jiayan
    Yang, Jiangxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2017, 231 (10) : 1685 - 1702
  • [34] Smooth Tool Orientation Generation Method of Five-axis Ball-end Milling via RTOs Interpolation
    Lu Y.
    Qiu H.
    Wang C.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (20): : 2466 - 2474
  • [35] On the prediction of cutting dynamics in ball-end milling of die surfaces
    Haghighat, H.
    Sadeghi, M.H.
    Elbestawi, M.A.
    Amirkabir (Journal of Science and Technology), 2001, 12 (47): : 48 - 59
  • [36] Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters
    Geng, L.
    Liu, P. L.
    Liu, K.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 78 (5-8): : 1289 - 1303
  • [37] Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters
    L. Geng
    P. L. Liu
    K. Liu
    The International Journal of Advanced Manufacturing Technology, 2015, 78 : 1289 - 1303
  • [38] ANALYSIS OF CUTTING FORCES IN BALL-END MILLING
    CHIANG, ST
    TSAI, CM
    LEE, AC
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1995, 47 (3-4) : 231 - 249
  • [39] THE PREDICTION OF CUTTING FORCE IN BALL-END MILLING
    YANG, MY
    PARK, HD
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1991, 31 (01): : 45 - 54
  • [40] Simulation of cutting forces in ball-end milling
    Milfelner, M
    Cus, F
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2003, 19 (1-2) : 99 - 106