General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations

被引:43
|
作者
Li, Jianhui [1 ,2 ]
Kilic, Z. Murat [3 ]
Altintas, Yusuf [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710054, Shaanxi, Peoples R China
[2] Univ British Columbia, Dept Mech Engn, Mfg Automat Lab, Vancouver, BC V6T 1Z4, Canada
[3] Univ Manchester, Dept Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 国家重点研发计划;
关键词
five-axis machine tools; milling process; chatter stability; forced vibration; machine tool dynamics; machining processes; modeling and simulation; PREDICTION; IDENTIFICATION; STABILITY; MECHANICS; ERRORS;
D O I
10.1115/1.4047625
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Five-axis ball-end milling is used extensively to machine parts with sculptured surfaces. This paper presents the general cutting dynamics model of the ball-end milling process for machine tools with different five-axis configurations. The structural dynamics of both the tool and workpiece are considered for the prediction of chatter stability at each tool location along the tool path. The effects of tool-workpiece engagement and tool axis orientation are included in the model. By sweeping the spindle speeds, the chatter-free spindle speeds are selected followed by the prediction of forced vibrations in five-axis milling of thin-walled, flexible parts. The proposed model has been experimentally illustrated to predict the chatter stability and forced vibrations on a table-tilting five-axis computer numerical control machine tool.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tool deflection error compensation in five-axis ball-end milling of sculptured surface
    Wenkui Ma
    Gaiyun He
    Limin Zhu
    Longzhen Guo
    The International Journal of Advanced Manufacturing Technology, 2016, 84 : 1421 - 1430
  • [22] An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis
    Dongming, Guo
    Fei, Ren
    Yuwen, Sun
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (04): : 0410041 - 0410048
  • [23] Optimal pitch angles determination of ball-end cutter for improving five-axis milling stability
    Zhan, Danian
    Li, Shikang
    Jiang, Shanglei
    Sun, Yuwen
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 : 832 - 846
  • [24] Geometric error compensation for five-axis ball-end milling by considering machined surface textures
    Fu, Guoqiang
    Gu, Tengda
    Gao, Hongli
    Jin, Yu'an
    Deng, Xiaolei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (5-8): : 1235 - 1248
  • [25] Cutter workpiece engagement region and surface topography prediction in five-axis ball-end milling
    Lotfi, Sai
    Wassila, Bouzid
    Gilles, Dessein
    MACHINING SCIENCE AND TECHNOLOGY, 2018, 22 (02) : 181 - 202
  • [26] Geometric error compensation for five-axis ball-end milling by considering machined surface textures
    Guoqiang Fu
    Tengda Gu
    Hongli Gao
    Yu’an Jin
    Xiaolei Deng
    The International Journal of Advanced Manufacturing Technology, 2018, 99 : 1235 - 1248
  • [27] Efficient identification of cutter axis offset in five-axis ball-end interrupted milling using twin data method free from cutting force model
    Dai, Yuebang
    Huang, Zhiye
    Du, Junjie
    Wu, Haodong
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 91 : 212 - 222
  • [28] MODEL FOR CUTTING FORCES PREDICTION IN BALL-END MILLING
    TAI, CC
    FUH, KH
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1995, 35 (04): : 511 - 534
  • [29] Force predictive model for five-axis ball end milling of sculptured surface
    Wei, Z. C.
    Guo, M. L.
    Wang, M. J.
    Li, S. Q.
    Liu, S. X.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 98 (5-8): : 1367 - 1377
  • [30] Process modeling and toolpath optimization for five-axis ball-end milling based on tool motion analysis
    Zhang, Liqiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 57 (9-12): : 905 - 916