A system of reaction diffusion equations arising in the theory of reinforced random walks

被引:228
作者
Levine, HA [1 ]
Sleeman, BD [1 ]
机构
[1] UNIV DUNDEE,DEPT MATH & COMP SCI,DUNDEE DD1 4HN,SCOTLAND
关键词
chemotaxis; reaction-diffusion systems; reinforced random walks;
D O I
10.1137/S0036139995291106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of solutions of a system of chemotaxis equations arising in the theory of reinforced random walks. We show that under some circumstances, finite-time blow-up of solutions is possible. In other circumstances, the solutions will decay to a spatially constant solution (collapse). We also give some intuitive arguments which demonstrate the possibility of the existence of aggregation (piecewise constant) solutions.
引用
收藏
页码:683 / 730
页数:48
相关论文
共 15 条
[1]  
Alberts B., 1983, MOL BIOL CELL
[3]   ON INTERACTING POPULATIONS THAT DISPERSE TO AVOID CROWDING - THE EFFECT OF A SEDENTARY COLONY [J].
BERTSCH, M ;
GURTIN, ME ;
HILHORST, D ;
PELETIER, LA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (01) :1-12
[4]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[5]   REINFORCED RANDOM-WALK [J].
DAVIS, B .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (02) :203-229
[6]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824
[7]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[8]  
NANJUDIAH V, 1983, J THEOR BIOL, V42, P63
[9]   MODELS OF DISPERSAL IN BIOLOGICAL-SYSTEMS [J].
OTHMER, HG ;
DUNBAR, SR ;
ALT, W .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (03) :263-298
[10]  
OTHMER HG, 1997, IN PRESS SIAM J APPL, V57