Conformally Einstein-Maxwell Kahler metrics and structure of the automorphism group

被引:16
作者
Futaki, Akito [1 ,2 ]
Ono, Hajime [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Saitama Univ, Dept Math, Sakura Ku, 255 Shimo Okubo, Saitama 3808570, Japan
基金
日本学术振兴会;
关键词
VECTOR-FIELDS; MANIFOLDS; GEOMETRY;
D O I
10.1007/s00209-018-2112-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a compact Kahler manifold and f a positive smooth function such that its Hamiltonian vector field for the Kahler form is a holomorphic Killing vector field. We say that the pair (g, f) is conformally Einstein-Maxwell Kahler metric if the conformal metric has constant scalar curvature. In this paper we prove a reductiveness result of the reduced Lie algebra of holomorphic vector fields for conformally Einstein-Maxwell Kahler manifolds, extending the Lichnerowicz-Matsushima Theorem for constant scalar curvature Kahler manifolds. More generally we consider extensions of Calabi functional and extremal Kahler metrics, and prove an extension of Calabi's theorem on the structure of the Lie algebra of holomorphic vector fields for extremal Kahler manifolds. The proof uses a Hessian formula for the Calabi functional under the set up of Donaldson-Fujiki picture.
引用
收藏
页码:571 / 589
页数:19
相关论文
共 29 条
  • [1] [Anonymous], 1957, Nagoya Math. J.
  • [2] [Anonymous], 1985, EXTREMAL KAHLER METR, DOI [10.1007/978-3-642-69828-6, DOI 10.1007/978-3-642-69828-6]
  • [3] [Anonymous], 1982, Institut Elie Cartan, 6, Inst. Elie Cartan
  • [4] [Anonymous], 1997, FIELDS MEDALLISTSLEC
  • [5] Apostolov V., ARXIV151206391
  • [6] Ambitoric geometry I: Einstein metrics and extremal ambikahler structures
    Apostolov, Vestislav
    Calderbank, David M. J.
    Gauduchon, Paul
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 721 : 109 - 147
  • [7] Apostolov V, 2015, ANN SCI ECOLE NORM S, V48, P1075
  • [8] Besse A L., 2007, Einstein Manifolds
  • [9] VECTOR FIELDS AND CHERN NUMBERS
    CARRELL, JB
    LIEBERMAN, DI
    [J]. MATHEMATISCHE ANNALEN, 1977, 225 (03) : 263 - 273
  • [10] On conformally Kahler, Einstein manifolds
    Chen, Xiuxiong
    Lebrun, Claude
    Weber, Brian
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (04) : 1137 - 1168