Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell

被引:68
作者
Hou, Yanping [1 ]
Zhang, Renduo [2 ]
Yu, Zebin [1 ]
Huang, Lirong [1 ]
Liu, Yuxin [1 ]
Zhou, Zili [1 ]
机构
[1] Guangxi Univ, Guangxi Coll & Univ Key Lab Environm Protect, Sch Environm Sci & Engn, Nanning 530004, Peoples R China
[2] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangdong Prov Key Lab Environm Pollut Control &, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Microbial electrolysis cell; Photocatalysis; Azo dye degradation; Hydrogen production; Degradation mechanism; METHYL-ORANGE; FUEL-CELL; WASTE-WATER; BIOELECTRICITY GENERATION; ELECTRICITY-GENERATION; DECOLORIZATION; REMOVAL; MEMBRANE; BIOCATHODE; SYSTEM;
D O I
10.1016/j.biortech.2016.10.069
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The single-chamber microbial electrolysis cell constructed with a TiO2-coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H-2) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300 mg/L at an applied voltage of 0.8 V, decolorization efficiencies decreased from 98% to 76% within 12 h, and cyclic H-2 production declined from 113 to 68 mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by (OH)-O-center dot generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H-2 production. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 33 条
[1]   Ultrafiltration technology with a ceramic membrane for reactive dye removal: Optimization of membrane performance [J].
Alventosa-deLara, E. ;
Barredo-Damas, S. ;
Alcaina-Miranda, M. I. ;
Iborra-Clar, M. I. .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 209 :492-500
[2]   Recent developments in photocatalytic water treatment technology: A review [J].
Chong, Meng Nan ;
Jin, Bo ;
Chow, Christopher W. K. ;
Saint, Chris .
WATER RESEARCH, 2010, 44 (10) :2997-3027
[3]   Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization [J].
Cui, Dan ;
Guo, Yu-Qi ;
Lee, Hyung-Sool ;
Cheng, Hao-Yi ;
Liang, Bin ;
Kong, Fan-Ying ;
Wang, You-Zhao ;
Huang, Li-Ping ;
Xu, Mei-Ying ;
Wang, Ai-Jie .
CHEMICAL ENGINEERING JOURNAL, 2014, 243 :355-363
[4]   Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor [J].
Cui, Dan ;
Guo, Yu-Qi ;
Cheng, Hao-Yi ;
Liang, Bin ;
Kong, Fan-Ying ;
Lee, Hyung-Sool ;
Wang, Ai-Jie .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 239 :257-264
[5]   Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism [J].
Devi, L. Gomathi ;
Kumar, S. Girish ;
Reddy, K. Mohan ;
Munikrishnappa, C. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 164 (2-3) :459-467
[6]   Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode [J].
Ding, Hongrui ;
Li, Yan ;
Lu, Anhuai ;
Jin, Song ;
Quan, Chao ;
Wang, Changqiu ;
Wang, Xin ;
Zeng, Cuiping ;
Yan, Yunhua .
BIORESOURCE TECHNOLOGY, 2010, 101 (10) :3500-3505
[7]   Electricity Generation and Pollutant Degradation Using a Novel Biocathode Coupled Photoelectrochemical Cell [J].
Du, Yue ;
Feng, Yujie ;
Qu, Youpeng ;
Liu, Jia ;
Ren, Nanqi ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (13) :7634-7641
[8]   Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles [J].
Fan, Jing ;
Guo, Yanhui ;
Wang, Jianji ;
Fan, Maohong .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) :904-910
[9]   Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions [J].
Fang, Zhou ;
Song, Hai-liang ;
Cang, Ning ;
Li, Xian-ning .
BIOSENSORS & BIOELECTRONICS, 2015, 68 :135-141
[10]   Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature [J].
Fernando, Eustace ;
Keshavarz, Taj ;
Kyazze, Godfrey .
BIORESOURCE TECHNOLOGY, 2014, 156 :155-162