Complexity Phase Diagram for Interacting and Long-Range Bosonic Hamiltonians

被引:10
作者
Maskara, Nishad [1 ,2 ]
Deshpande, Abhinav [2 ,3 ,4 ]
Ehrenberg, Adam [2 ,3 ]
Tran, Minh C. [2 ,3 ,5 ]
Fefferman, Bill [2 ,6 ,7 ]
Gorshkov, Alexey, V [2 ,3 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[4] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[5] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[6] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[7] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
CLASSICAL SIMULATION; QUANTUM CIRCUITS; COMPUTATION;
D O I
10.1103/PhysRevLett.129.150604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify phases of a bosonic lattice model based on the computational complexity of classically simulating the system. We show that the system transitions from being classically simulable to classically hard to simulate as it evolves in time, extending previous results to include on-site number-conserving interactions and long-range hopping. Specifically, we construct a complexity phase diagram with easy and hard "phases" and derive analytic bounds on the location of the phase boundary with respect to the evolution time and the degree of locality. We find that the location of the phase transition is intimately related to upper bounds on the spread of quantum correlations and protocols to transfer quantum information. Remarkably, although the location of the transition point is unchanged by on-site interactions, the nature of the transition point does change. Specifically, we find that there are two kinds of transitions, sharp and coarse, broadly corresponding to interacting and noninteracting bosons, respectively. Our Letter motivates future studies of complexity in many-body systems and its interplay with the associated physical phenomena.
引用
收藏
页数:8
相关论文
共 72 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]  
[Anonymous], US, DOI [10.1103/PhysRevLett.129.150604, DOI 10.1103/PHYSREVLETT.129.150604]
[4]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[5]   Architectures for Quantum Simulation Showing a Quantum Speedup [J].
Bermejo-Vega, Juan ;
Hangleiter, Dominik ;
Schwarz, Martin ;
Raussendorf, Robert ;
Eisert, Jens .
PHYSICAL REVIEW X, 2018, 8 (02)
[6]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[7]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[8]  
Bouland A., 2018, P 13 C THEORY QUANTU, V111
[9]  
Bouland A., 2016, P 31 C COMPUTATIONAL
[10]   Achieving quantum supremacy with sparse and noisy commuting quantum computations [J].
Bremner, Michael J. ;
Montanaro, Ashley ;
Shepherd, Dan J. .
QUANTUM, 2017, 1