Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study

被引:36
作者
Du, Pingfan [1 ,2 ]
Song, Lixin [1 ]
Xiong, Jie [1 ]
Cao, Houbao [1 ]
机构
[1] Zhejiang Sci Tech Univ, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Ctr Mat Engn, Hangzhou 310018, Peoples R China
关键词
WASTE-WATER TREATMENT; VISIBLE-LIGHT; TITANIA NANOFIBERS; METHYLENE-BLUE; COMPOSITE; DYE; NANOPARTICLES; PURIFICATION; FABRICATION; TECHNOLOGY;
D O I
10.1007/s10853-013-7649-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
TiO2 and ZnO nanofibers were fabricated through a facile electrospinning method. The obtained nanofibers were characterized by a variety of analytical means including FESEM, TEM, SAED, XRD, UV-Vis, and PL. Compared with nanoparticles, nanofibers can be recycled more easily when they are used as photocatalysts. The photocatalytic activities of these two nanofibers were investigated and compared by evaluating the photodegradation of hazardous dye Rhodamine B. Although, ZnO nanofibrous photocatalyst exhibits better initial activity than TiO2 nanofibrous counterpart, its photocatalytic performance is inferior to that of the latter on the whole. The photo-instability arising from photocorrosion may be responsible for its rapid deterioration in activity. The difference in the photocatalytic properties between TiO2 and ZnO nanofibers was discussed, and a possible photodegradation mechanism of organic dyes in the presence of the nanofibrous photocatalyst was proposed. This work offers a direct insight into the comparison of photocatalysis of electrospun TiO2 and ZnO nanofibers.
引用
收藏
页码:8386 / 8392
页数:7
相关论文
共 46 条
[1]   Photocatalytic activity of titania fibers obtained by electrospinning [J].
Alves, A. K. ;
Berutti, F. A. ;
Clemens, F. J. ;
Graule, T. ;
Bergmann, C. P. .
MATERIALS RESEARCH BULLETIN, 2009, 44 (02) :312-317
[2]   TiO2/MgO composite photocatalyst:: the role of MgO in photoinduced charge carrier separation [J].
Bandara, J ;
Hadapangoda, CC ;
Jayasekera, WG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 50 (02) :83-88
[3]   Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper [J].
Barka, Noureddine ;
Qourzal, Samir ;
Assabbane, Ali ;
Nounah, Abederrahman ;
Ait-Ichou, Yhya .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2008, 195 (2-3) :346-351
[4]   Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods [J].
Baruah, Sunandan ;
Jaisai, Mayuree ;
Dutta, Joydeep .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (05) :918-921
[5]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[6]   Light Scattering and Enhanced Photoactivities of Electrospun Titania Nanofibers [J].
Chen, Yuan-Lian ;
Chang, Yi-Hao ;
Huang, Jow-Lay ;
Chen, Ingann ;
Kuo, Changshu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (05) :3857-3865
[7]   Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers: Effects of Mesoporosity and Interparticle Charge Transfer [J].
Choi, Sung Kyu ;
Kim, Soonhyun ;
Lim, Sang Kyoo ;
Park, Hyunwoong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16475-16480
[8]   Recent developments in photocatalytic water treatment technology: A review [J].
Chong, Meng Nan ;
Jin, Bo ;
Chow, Christopher W. K. ;
Saint, Chris .
WATER RESEARCH, 2010, 44 (10) :2997-3027
[9]   Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution [J].
Chu, Dewei ;
Masuda, Yoshitake ;
Ohji, Tatsuki ;
Kato, Kazumi .
LANGMUIR, 2010, 26 (04) :2811-2815
[10]   Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers [J].
Chuangchote, Surawut ;
Jitputti, Jaturong ;
Sagawa, Takashi ;
Yoshikawa, Susumu .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) :1140-1143