On a Generalized Laguerre Operational Matrix of Fractional Integration

被引:8
作者
Bhrawy, A. H. [1 ,2 ]
Baleanu, D. [3 ,4 ,5 ]
Assas, L. M. [1 ,6 ]
Tenreiro Machado, J. A. [7 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf 62511, Egypt
[3] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06810 Yenimahalle Ankara, Turkey
[4] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[5] Inst Space Sci, RO-76900 Magurele, Romania
[6] Umm Al Qura Univ, Fac Sci, Dept Math, Mecca 21955, Saudi Arabia
[7] Polytech Porto, Inst Engn, Dept Elect Engn, P-431420007 Oporto, Portugal
关键词
DIFFERENTIAL-EQUATIONS; SPECTRAL METHOD; SERIES APPROACH; IDENTIFICATION;
D O I
10.1155/2013/569286
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new operational matrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with generalized Laguerre tau method for solving general linear multiterm fractional differential equations (FDEs). The method has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposed method is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
引用
收藏
页数:7
相关论文
共 39 条
[1]  
Alghamdi M. A., 2012, ABSTR APPL ANAL, V2012
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 2012, FRACTIONAL DYNAMICS
[4]  
[Anonymous], 2012, FRACTIONAL CALCULUS, DOI DOI 10.1142/10044
[5]  
[Anonymous], 2006, Journal of the Electrochemical Society
[6]   On the solution set for a class of sequential fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[7]   An existence result for a superlinear fractional differential equation [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1129-1132
[8]   Transient chaos in fractional Bloch equations [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha ;
Baleanu, Dumitru ;
Magin, Richard .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3367-3376
[9]   The operational matrix of fractional integration for shifted Chebyshev polynomials [J].
Bhrawy, A. H. ;
Alofi, A. S. .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :25-31
[10]   A quadrature tau method for fractional differential equations with variable coefficients [J].
Bhrawy, A. H. ;
Alofi, A. S. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (12) :2146-2152