Plant Growth-promoting Rhizobacteria Mitigate Deleterious Effects of Salt Stress on Strawberry Plants (Fragaria xananassa)

被引:88
|
作者
Karlidag, Huseyin [1 ]
Yildirim, Ertan [2 ]
Turan, Metin [3 ]
Pehluvan, Mucahit [4 ]
Donmez, Figen [5 ]
机构
[1] Inonu Univ, Dept Hort, Fac Agr, Malatya, Turkey
[2] Ataturk Univ, Fac Agr, Dept Hort, Erzurum, Turkey
[3] Yeditepe Univ, Dept Genet & Bioengn, TR-34755 Istanbul, Turkey
[4] Igdir Univ, Dept Hort, Fac Agr, Igdir, Turkey
[5] Igdir Univ, Dept Plant Protect, Fac Agr, Igdir, Turkey
关键词
plant growth-promoting rhizobacteria; plant nutrient; salinity stress; strawberry; BACILLUS-SUBTILIS FZB24; LEAF WATER-CONTENT; MEMBRANE-PERMEABILITY; IONIC COMPOSITION; WHEAT SEEDLINGS; SALICYLIC-ACID; BACTERIA; RESISTANCE; TOLERANCE; PHOSPHATE;
D O I
10.21273/HORTSCI.48.5.563
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The effect of selected plant growth-promoting rhizobacteria (PGPR) on the growth, chlorophyll content, nutrient element content, and yield of strawberry plants under natural field salinity conditions stress was investigated. Field experiments were conducted using a randomized complete block design with five PGPRs (Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37, and Kocuria erythromyxa EY43) and a control (no PGPR) in 2009 and 2010. PGPR inoculations significantly increased the growth, chlorophyll content, nutrient element content, and yield of strawberry plants. PGPR treatments lowered electrolyte leakage of plants under saline conditions. The leaf relative water content (LRWC) of plants rose with bacterial inoculation. All nutrient element contents of leaves and roots investigated were significantly increased with PGPR inoculations with the exception of sodium (Na) and chlorine (Cl). The highest efficiency to alleviate salinity stress on the yield and nutrient uptake of strawberry plants was obtained from EY43 (228 g per plant) and EY37 (225 g per plant) treatment and the yield increasing ratio of plants was 48% for EY43 and 46% for EY 37 compared with the control treatment (154 g per plant). The highest nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), and iron (Fe) concentrations were obtained from EY43 and followed by E6, E37, and E30, and increasing ratio of leaves and root N, P, K, Ca, Mg, S, Mn, Cu, and Fe contents were 22% to 33%, 34% to 8.8%, 89% to 11%, 11.0% to 7.2%, 5.1% to 6.2%, 97% to 65%, 120% to 140%, 300% to 15%, and 111% to 9.0%, respectively. The results of the study suggested that PGPR inoculations could alleviate the deleterious effects of salt stress conditions on the growth and yield of strawberry plants under salinity conditions.
引用
收藏
页码:563 / 567
页数:5
相关论文
共 50 条
  • [21] Effects of transplant type, plant growth-promoting rhizobacteria, and soil treatment on growth and yield of strawberry in Florida
    Kokalis-Burelle, N
    PLANT AND SOIL, 2003, 256 (02) : 273 - 280
  • [22] Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions
    Chompa, Sayma Serine
    Zuan, Ali Tan Kee
    Amin, Adibah Mohd
    Hun, Tan Geok
    Ghazali, Amir Hamzah Ahmad
    Sadeq, Buraq Musa
    Akter, Amaily
    Rahman, Md Ekhlasur
    Rashid, Harun Or
    INTERNATIONAL MICROBIOLOGY, 2024, 27 (04) : 1151 - 1168
  • [23] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [24] Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria
    Mitra, Debasis
    Rodriguez, Alondra M. Diaz
    Cota, Fannie I. Parra
    Khoshru, Bahman
    Panneerselvam, Periyasamy
    Moradi, Shokufeh
    Sagarika, Mahapatra Smruthi
    Andelkovic, Snezana
    de los Santos-Villalobos, Sergio
    Mohapatra, Pradeep K. Das
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2021, 115
  • [25] Plant responses to plant growth-promoting rhizobacteria
    L. C. van Loon
    European Journal of Plant Pathology, 2007, 119 : 243 - 254
  • [26] Plant Growth-Promoting Actions of Rhizobacteria
    Spaepen, Stijn
    Vanderleyden, Jos
    Okon, Yaacov
    PLANT INNATE IMMUNITY, 2009, 51 : 283 - 320
  • [27] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [28] Isolation and assessment of halophilic rhizobacteria plant growth-promoting traits for alleviating salt stress in wheat
    Sezen, Alev
    Algur, Omer Faruk
    Asci, Ferruh
    Unal, Arzu
    TURKISH JOURNAL OF BOTANY, 2024, 48 (02) : 79 - 90
  • [29] Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress
    Rabiei, Zahra
    Hosseini, Seyyed Jaber
    Pirdashti, Hemmatollah
    Hazrati, Saeid
    HELIYON, 2020, 6 (10)
  • [30] Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review
    Ha-Tran, Dung Minh
    Nguyen, Trinh Thi My
    Hung, Shih-Hsun
    Huang, Eugene
    Huang, Chieh-Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 38