Canonical transformations in quantum mechanics

被引:11
作者
Blaszak, Maciej [1 ]
Domanski, Ziemowit [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
Quantum mechanics; Deformation quantization; Canonical transformations; Moyal product; Phase space; WIGNER DISTRIBUTION-FUNCTIONS; ANGLE VARIABLES; REPRESENTATIONS; STATES; QUANTIZATION;
D O I
10.1016/j.aop.2012.12.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the general theory of canonical transformations of coordinates in quantum mechanics. First, the theory is developed in the formalism of phase space quantum mechanics. It is shown that by transforming a star-product, when passing to a new coordinate system, observables and states transform as in classical mechanics, i.e., by composing them with a transformation of coordinates. Then the developed formalism of coordinate transformations is transferred to a standard formulation of quantum mechanics. In addition, the developed theory is illustrated on examples of particular classes of quantum canonical transformations. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 96
页数:27
相关论文
共 38 条
[1]   QUANTUM CANONICAL-TRANSFORMATIONS AND INTEGRABILITY - BEYOND UNITARY TRANSFORMATIONS [J].
ANDERSON, A .
PHYSICS LETTERS B, 1993, 319 (1-3) :157-162
[2]   CANONICAL-TRANSFORMATIONS IN QUANTUM-MECHANICS [J].
ANDERSON, A .
ANNALS OF PHYSICS, 1994, 232 (02) :292-331
[3]  
[Anonymous], J GEOM PHYS, DOI 10.1016/0393-0440(86)90021-5
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   Quantum trajectories [J].
Blaszak, Maciej ;
Domanski, Ziemowit .
PHYSICS LETTERS A, 2012, 376 (47-48) :3593-3598
[6]   Phase space quantum mechanics [J].
Blaszak, Maciej ;
Domanski, Ziemowit .
ANNALS OF PHYSICS, 2012, 327 (02) :167-211
[7]   Formal GNS construction and states in deformation quantization [J].
Bordemann, M ;
Waldmann, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (03) :549-583
[8]   Quantum mechanics II [J].
Born, M ;
Heisenberg, W ;
Jordan, P .
ZEITSCHRIFT FUR PHYSIK, 1926, 35 (8/9) :557-615
[9]   Features of time-independent Wigner functions [J].
Curtright, T ;
Fairlie, D ;
Zachos, C .
PHYSICAL REVIEW D, 1998, 58 (02)
[10]  
de Gosson M., 2006, Symplectic Geometry and Quantum Mechanics, V166